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groups C, D, and E (Table 2, Fig. 2h; P < 0.05, df = 4, F
= 3.93). Concentration of Ni in groups B and C was sig-
nificantly lower than those in group E (Table 2, Fig. 2f; P
< 0.05, df = 4, F = 16.45). There were no significant dif-
ferences detected in Cu among five groups (Table 2, Fig.
2g). Concentrations of Mn, Fe, and Al in group A were

significantly lower than those in other groups (Table 2,
Fig. 2i–k; df = 4, F = 18.99, P < 0.05; df = 4, F = 5.59, P
< 0.05; df = 4, F = 6.12, P < 0.05, respectively). Mn in
groups B and C were significantly lower than that in
group E (Table 2, Fig. 2i; P < 0.05, df = 4, F = 18.99).

Table 2 Descriptive statistical analysis of 11 heavy metals in water samples of lakes along a rural to urban gradient in central China
(Mean±SD)

Heavy
metals

Concentrations of heavy metals in different groups df F P

A B C D E

Cd (μg/L) 0.05±0.01a 0.09±0.02b 0.15±0.04b 0.21±0.07b 0.15±0.02b 4 6.120 0.004**

Co (μg/L) 0.37±0.09a 1.51±0.74bc 1.16±0.59b 2.84±1.58bc 3.30±1.36c 4 8.906 0.001**

Pb (μg/L) 1.42±0.62a 5.74±2.34b 5.13±2.10b 7.74±4.52b 10.04±8.44b 4 5.329 0.007**

Cr (μg/L) 3.10±0.38a 9.93±2.36b 8.56±5.46b 11.40±5.69b 10.28±5.82b 4 4.290 0.016**

As (μg/L) 3.12±0.53a 18.52±12.64b 20.73±12.34b 15.16±5.07b 45.19±38.37b 4 7.126 0.002**

Ni (μg/L) 5.30±0.61a 12.33±2.18b 11.48±2.70b 16.99±4.02bc 18.22±3.23c 4 16.456 0.000**

Cu (μg/L) 6.64±1.51 11.97±5.06 15.42±13.25 15.82±5.93 20.69±15.67 4 1.277 0.322

Zn (μg/L) 10.35±1.16a 18.68±5.51ab 22.25±8.75b 28.13±8.27b 25.46±10.75b 4 3.930 0.022*

Mn (μg/L) 43.46±13.45a 200.65±91.95b 150.75±68.54b 391.61±164.47bc 656.24±139.43c 4 18.995 0.000**

Fe (mg/L) 0.36±0.05a 2.28±1.49b 2.02±1.43b 5.19±4.15b 4.59±3.20b 4 5.599 0.006**

Al (mg/L) 0.36±0.02a 3.17±2.28b 2.46±1.29b 6.75±5.22b 5.59±4.06b 4 6.120 0.004**

* denotes significant difference P < 0.05; ** denotes significant difference P < 0.01

Fig. 2 Concentrations (mean ± SD) of a Cd, b Co, c Pb, d Cr, e As, f Ni, g Cu, h Zn, i Mn, j Fe, and k Al in water samples of lakes along a rural to
urban gradient in central China. Note: different letters above bars indicate significant group difference (P < 0.05)
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Rural reservoirs in group A serve as backup drinking
and irrigation water sources in the suburb of Wuhan.
These reservoirs are located far away from the urban
area and are surrounded by hills and farmlands. The fre-
quency and intensity of human activities surrounding
these reservoirs were significantly lower than lakes in the
other groups. The possible sources of heavy metals to
these reservoirs are mainly natural weathering, rain ero-
sion of bare rocks, and atmospheric deposition (Wang
et al. 2014; Zhang et al. 2015; Xia et al. 2018). The results
are consistent with the previous studies (Islam et al. 2015;
Yang et al. 2017) that the concentrations of heavy metals
in urban ponds were generally higher than those in the
suburban nature ponds, and the urban land use and an-
thropogenic factors played an important role in heavy
metal pollutions of urban lakes and rivers.
Lakes in group B were in the rural area of Wuhan and

less affected by human activities related to aquaculture.
Previous studies indicated that chemicals such as copper
sulfate are often used as algaecide, which could be the
main source of heavy metals in water (Farmaki et al.
2014; Xia et al. 2018; Zhang et al. 2019). Lakes in groups
C, D, and E were in the central urban area of Wuhan
City, which were surrounded by paved roads, parking
lots, and intensive residential and commercial facilities.
Heavy metals in these lakes are more affected by urban-
related activities. Compared to groups C and D, it seems
aquaculture activities in group E did not significantly
change the heavy metals in these urban lakes.
Many studies showed that urbanization increased

heavy metal concentrations in surface water (Chalmers
et al. 2014; Zhang et al. 2015). Heavy metals are emitted
into the environment through vehicle exhaust, waste dis-
posal, fossil fuel combustion, and atmospheric depos-
ition (Ferreira et al. 2016; Huber et al. 2016). Industries,
such as coal, lead-zinc mining, steel manufacturing, and
other activities have gradually increased in Wuhan. The
discharge of industrial and municipal effluents as well as
runoff from streets includes heavy metals such as Pb,
Zn, and Cu (Kayhanian 2012; Huber et al. 2016). Ac-
cording to Maanan et al. (2014), Ni and Cr are the main
pollutants originating from urban sewage.

Differences of heavy metals in sediments from rural to
urban lakes
The EF values for all of the selected heavy metals were
higher than 1.0 indicating that the heavy metals in sedi-
ments were enriched from man-made materials. There
were no significant differences of studied heavy metals
among the five groups except for As, which could poten-
tially indicate that As in sediments was relatively more
sensitive to urban processes than other elements. But EF
values showed minor enrichment for As in all groups,
which indicated that the overall influence of anthropo-
genic activities on As in sediments was limited. Human
disturbance and non-point pollution may be the source of
elevated As in other lake groups (Wang et al. 2019). Stud-
ies indicated that anthropogenic activities including min-
ing, metal smelting, coal combustion, and burning of
other fossil fuels can introduce excess As to lake, and As
dissolved in the water column are readily deposited into
sediments due to its high affinity for suspended particles
(Zeng et al. 2014; Gao et al. 2017). Therefore, it was not
surprising to observe high As concentrations in urban lake
sediment (groups C, D, and E). Zhang et al. (2019) also
showed that As in recent sediments was much more
abundant than in earlier deposits indicating the increase
in As pollution, likely derived from pesticide residues. This
may be the reason for relatively high As concentration in
rural commercial fishing lakes in group B as well, which
were surrounded by farmlands.
The EF values showed that the sources of heavy metals

in sediments were more likely to be anthropogenic. Al-
though the reservoirs in group A received little direct
human disturbances from surrounding watersheds,
heavy metal inputs potentially from atmospheric depos-
ition and surface runoff could be gradually increased
after a long-term accumulation and enrichment (Ma
et al. 2013; Goretti et al. 2016). Sediments in the five
groups could have been affected by a variety of external
activities for a long time. Heavy metals accumulate in
the surface sediments through adsorption, complexation,
precipitation, and organic flocculation, and integrate
heavy metal load over longer time. This slow and lasting
effect may be an important reason why the differences

Table 6 Potential ecological risk index (RI) of metals in sediments of lakes along a rural to urban gradient in central China

Group Eir
a RIb RI ranges and categories

Cu Pb Cd Zn Cr As

A 10.55 2.33 15 0.6 2.47 33.35 64.3 RI < 112.5 low

B 3.74 2.11 9.72 0.55 6.7 41.7 64.52 112.5 ≤ RI < 225 moderate

C 9.37 4.49 18.38 0.95 7.12 35.3 75.61 225 ≤ RI < 450 considerable

D 4.66 2.53 22.77 0.66 7.11 34.85 72.58 RI ≥ 450 high

E 6.27 2.79 13.58 0.77 7.43 26.16 57

Note: aEir is the potential ecological risk factor for individual heavy metals; bRI represents the sensitivity of the biological community to toxic substance and
illustrates the potential ecological risk caused by the overall contamination
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of heavy metals in sediments among groups were not as
significant as that in water, and potentially makes sedi-
ments less sensitive to urbanization compared to water
in the studied lakes.
The EF values showed moderately severe enrichment

for Cd in sediments of most studied lakes, and RI index
showed that Cd was the metal with highest concern as a
risk factor, which indicated that Cd concentration in
sediments of the studied lakes was seriously affected by
anthropogenic activities. Previous studies have shown
that the distribution of Cd was closely related to the ex-
tensive industrial and agricultural activities (Zhang and
Shan, 2008; Bai et al., 2011; Li et al., 2014). The potential
ecological risks of all the studied heavy metals in sedi-
ments were low in the five groups indicating that heavy
metals were enriched in the sediments to a certain de-
gree but did not reach the ecological risk level. Heavy
metals accumulate in the surface sediments through a
slow and complex process and could increase over time.
Therefore, the urban wastes including gas, solids, and ef-
fluents need to be monitored periodically and exten-
sively to meet the emission and discharge standards to
control the level of heavy metal pollution in the region.

Conclusions
In lake water, concentrations of Co, Pb, Cr, As, Ni, Mn,
Fe, and Al were the lowest in the rural reservoir group,
and most of the studied heavy metals in urban groups
were higher than those in rural groups. These results in-
dicated that urbanization risks increasing the concentra-
tions of heavy metals in lake water. In sediments,
concentration of As in rural group A was significantly
lower than that in other groups, while concentrations of
other metals had no significant differences among
groups. The EF values of selected heavy metals showed
there were different degrees of enrichments of heavy
metals in sediments, and the sources of heavy metals in
sediments were more likely from anthropogenic activ-
ities. Metals in sediments of all studied lakes were at low
ecological risk levels. Current study suggested that lakes
in urban area may need further attention in terms of
heavy metal management. This research could be a ref-
erence for the heavy metal pollution prevention and sus-
tainable urban ecosystem management in the central
Yangtze River Basin of China and may also be applied to
other aquatic ecosystems globally.
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