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Abstract

Soil respiration, soil enzymes, and microbial biomass are important in carbon cycling in the terrestrial ecosystem
which is generally limited by environmental factors and soil carbon availability. Hence, we tried to assess the factors
affecting the functional aspects of these processes in a semi-arid climate. We monitored soil respiration (surface)
using a portable infrared gas analyzer (Q-Box SR1LP Soil Respiration Package, Qubit Systems, Canada) equipped
with a soil respiration chamber (Model: G 180). Soil respiration was measured at midday during each season
throughout the study period. Soil enzymatic activities and microbial biomass carbon (MBC) were analyzed following
the standard protocol for a year during peak time in four seasons at 0-10 cm and 10-20 cm depth. Soil respiration
shows significant variation with highest in monsoon (331 umol CO, m™ s™') and lowest in winter (0.57 umol CO,
m 2 s "). Similarly, B-glucosidase, dehydrogenase, and phenol oxidase activity ranged from 11.15 to 212.59 ug PNP
g 'DWh', 011 to0 1647 ug TPF g~ DW h™', and 4102.95 to 10187.55 umol ABTS" g~ DW min™", respectively.
MBC ranged from 17.08 to 484.5 ug C g~'. Besides, soil respiration, soil enzymes (except B-glucosidase), and MBC
were significantly correlated with soil moisture. Seasonality, optimum moisture and temperature played a significant
role in determining variations in soil microbiological processes (except (-glucosidase activity); the carbon cycling in
the study area is assisted by enzyme activity; dehydrogenase and phenol oxidase played a significant role in soil
respiration; hence, this landscape is sensitive to environmental changes.
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Background

Soil respiration accounts for the largest potential source of
atmospheric carbon; hence, even small changes in soil res-
piration can increase or decrease the atmospheric carbon
dioxide level (Schimel 1995). Soil respiration is carbon di-
oxide emission from soil surface which controls the pri-
mary carbon cycle in ecosystems (Jin et al. 2007). Soil
respiration consists of two components, namely, auto-
trophic and heterotrophic respiration. Autotrophic respir-
ation is carbon dioxide released from plant roots whereas
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heterotrophic respiration is carbon dioxide released from
microbial activity associated with soil organic matter de-
composition and constitute 54% of total respiration in the
forest (Hanson et al. 2000; Ryan and Law 2005; Wei et al.
2015). Photosynthesis and heterotrophic respiration are
the key processes that regulate terrestrial carbon balance
(Xu et al. 2018). Soil heterotrophic respiration and decom-
position are mainly associated with the microbial activity
(Hanson et al. 2000). Soil enzymes catalyze many import-
ant biological processes involved in enhancing the rate of
soil metabolism and promote the circulation of nutrient
elements (Li et al. 2018).
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The soil has a major role in the fertility and stability of
forest ecosystems (Smith et al. 1992). Micro-organisms
present in soil are responsible for decomposition and con-
version of organic matter for vegetation development and
plant growth (Aguilera et al. 1999). Soil microbial biomass
can act as a source or sink of available nutrients (Singh et
al. 1989) and changes in microbial biomass also affect soil
organic matter turnover (Yang et al. 2010). The main
component of soil microbial biomass is microbial biomass
carbon (MBC), it is responsible for controlling the carbon
and nutrient flows in ecological systems (Ross et al. 1995;
Shao et al. 2015). Living microbial biomass carbon and
dead microbial biomass both contributes to microbial bio-
mass carbon pool (Xu et al. 2018). Necromass of dead mi-
cro-organisms represents a huge amount of carbon in soil
and can act as a readily available source of carbon for liv-
ing micro-organisms (Xu et al. 2018).

It is well known that the accumulation and decompos-
ition of soil organic carbon (SOC) has a direct effect on
carbon storage in the terrestrial ecosystem and global
carbon balance (Liu et al. 2016). Hence, soil microbial
properties such as soil respiration, enzyme activity, and
microbial biomass are considered important in predict-
ing SOC dynamics in many recent studies (Lawrence et
al. 2009; Davidson et al. 2012; Wieder et al. 2013; Wei et
al. 2015; Memoli et al. 2017; Panico et al. 2020). Various
studies have shown seasonal variation in soil respiration
(Borken et al. 2003; Huxman et al. 2004; Xu et al. 2004;
Jin et al. 2007; Placella et al. 2012; Salazar et al. 2018;
Meena et al. 2020), soil enzyme activity (Boerner et al.
2005; Bastida et al. 2008; Hedo et al. 2015), and soil mi-
crobial biomass carbon (Singh et al. 1989; Maithani et al.
1996; Bohlen et al. 2001; Ruan et al. 2004; Feng et al.
2009) in the various forest ecosystem. Previous studies
of Arunachalam and Arunachalam (2000), Barbhuiya et
al. (2004), and Mori et al. (2016) have reported seasonal
variation in MBC in the sub-tropical broad-leaved forest,
wet-tropical forest and tropical savannah, respectively.
However, studies reporting the same in semi-arid forests
are still lacking. Also, seasonal effect considering the as-
sociation of soil respiration, and enzyme activity with
soil MBC remain uncertain in semi-arid conditions.
SOC is mainly recognized as a driving factor that
regulates soil microbial growth (Wardle 1992). Soil res-
piration mainly depends on the concentration, compos-
ition, and rate of supply of carbon substrates in the soil
solution to the microbial community which is respon-
sible for soil respiration (Van Hees et al. 2005; Igbal et
al. 2010). Also, to evaluate the effect of management on
soil respiration in forest ecosystems, soil microbial com-
munity and its dynamics should be given much attention
(Qi and Yang 2017).

In arid and semi-arid ecosystems strong seasonal pre-
cipitation and cycles of drying and rewetting are
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predominant (Austin et al. 2004). The irregular rainfall
pattern in the semi-arid region can create drying and
wetting stresses in forest soils (Fierer and Schimel 2002).
Hence in such ecosystems, soil microbes are highly sen-
sitive to water impulse and precipitation which results in
soil organic carbon decomposition initiation, thereby
leading to a cascade of various responses (Carbone et al.
2011; Xu et al. 2018). Since the beginning of the twenti-
eth century, changes in precipitation, temperature, and
extreme climatic events have been observed (Milly et al.
2002; Peterson et al. 2002), simultaneously, rainfall event
was also found to be less frequent and more extreme
(Stocker 2014). Variability in monsoon rainfall is ob-
served in the country (Mall et al. 2006) which will
develop a threat for tropical soils in the Indian subcon-
tinent (Bhattacharyya et al. 2000). As the future climate
is predicted to be more extreme even in the case of the
semi-arid condition, the data on such conditions would
be more important. Thus, to predict the future of carbon
cycle and their potential to sequester carbon in the soil
in the changing world, we need to understand the sea-
sonal changes in the processes that play important role
in carbon cycling (i.e., soil respiration, enzyme activity,
and soil MBC).

The study was conducted in the National Capital Ter-
ritory (NCT) of Delhi which has a scattered forest cover
and investigations on soil respiration, enzyme activity,
and MBC are very limited. Since these studies are essen-
tial for understanding carbon cycling, hence, creating
management policies to maximize the sequestration of
carbon in the soil becomes necessary. The data gap in
the semi-arid forest of India compelled us to investigate
whether the soil respiration, enzyme activities, and MBC
were influenced by seasonal changes in the semi-arid cli-
mate. Our study also discussed the relationship between
SOC and the above factors to provide a theoretical basis
for further understanding of the carbon cycling in semi-
arid forests of India.

Materials and methods

Study site

Our study sites are Delhi Ridges which are fragmented
forest patches and scattered into four ridges, viz., South-
ern Ridge, Central Ridge, South-Central Ridge, and
Northern Ridge occupying an area of 6200, 864, 626,
and 87 ha, respectively. Out of the total geographical
area of 1483 km?, the forest cover of the state is 192.41
km? which is 12.97% of the total geographical area of
Delhi (FSI 2017). The state lies in the northern part of
India between 28° 24" 17"-28°53" 00" N latitudes and
76° 45" 30”"-77° 21" 30" E longitude. The Delhi Ridge
forests are the northern extension of Aravalli hill range
and occupy 77.77 km? of forest cover. The distribution
of the four ridges (Tomar and Baishya 2019) is depicted
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in Fig. 1. During June 2016—May 2017, the temperature
recorded in the study area varied between 15.6 and
40.5°C in January and May, respectively. The annual
rainfall recorded was 1285.2 mm from June 2016—May
2017 (Fig. 2a). The highest rainfall was observed in July
and August. The basic soil characteristics of each Delhi
Ridge are represented in Table 1.

The dominated species in the Delhi Ridge is Prosopis
juliflora which is an exotic tree species introduced by
the British regime in 1877 to enhance the vegetation of
the region. According to Champion and Seth (1968),
Ridge forests are classified as tropical thorn forests. Cli-
mate is semi-arid and soil texture is sandy loam. The soil
pH ranged between 6.31 and 7.51. The state witnesses
four seasons, namely, pre-monsoon (March to May),
monsoon (June to Aug.), post-monsoon (Sept. to Nov.),
and Winter (Dec. to Feb.) (Tomar and Baishya 2019).

Soil sampling

Soil sampling was done for 1year between June 2016
and May 2017. The soil was collected using a steel soil
auger after removing litter from the soil surface in pre-
monsoon, monsoon, post-monsoon, and winter seasons
in all four Ridges. Three replicates of five randomly col-
lected sub-samples were collected and homogenized
from each ridge in both soil depth, namely, 0-10 cm and
10-20 cm. Soil samples were collected from near the
collars inserted for soil respiration study. Samples were
taken to the laboratory in airtight and labeled sampling
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packets, plant litter, and woody debris were removed
and stored at 4 °C for further analysis.

Soil physico-chemical and microbiological analysis

Soil moisture was determined within 48 h of soil collec-
tion. Ten grams of fresh soil was dried in an oven at
105°C until constant weight. Soil moisture was deter-
mined following Allen et al. (1974). Soil temperature
was measured using soil thermometer inserted till 10 cm
depth in the soil. Soil organic carbon (SOC) was ana-
lyzed by digesting soil with a few drops of hydrochloric
acid (HCI). The digested soil was oven dried and SOC
content in the digested sample was determined using
Liqui TOC 1II analyzer (Elementar Analysis systems
GmbH, Germany). Soil respiration was measured at
midday between 11:00 am and 2:00 pm local time, during
each season throughout the study period, using a port-
able infrared gas analyzer (Q-Box SR1LP Soil Respiration
Package, Qubit Systems, Canada) equipped with soil res-
piration chamber (Model: G 180) having a diameter of
10.16cm and a volume of 1.0L. The collars were
inserted 1.9cm into the soil at each sampling point
about two weeks before the first measurement. Litter
was removed before the insertion of the chamber. All
collars were left at the site for the entire study period.
Soil respiration was expressed in pmol CO, m™>s™%. Soil
temperature and moisture were measured near each col-
lar at the same time as soil respiration. Soil pB-
glucosidase activity (BA) indicates the state of organic
matter and decomposition activity in the soil (Garcia
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Fig. 2 (a) Annual variation in precipitation (mm) (source: Agromet, IARI, Delhi) and (b) seasonal variation in soil temperature (°C) during sampling
year (June 2016-May 2017) in Delhi

et al. 1994; Wang et al. 2014). It was assayed using p-
nitrophenyl-3-D-glucoside (PNG) (Eivazi and Tabatabai
1988). One gram of field moist 2 mm sieved soils was
taken in a 50 ml conical flask. To this 250 pl of toluene,
4 ml of modified universal buffer (pH 6) and 1 ml of 25
mM p-nitrophenyl-B-D-glucoside was added. The blank
flask did not get a PNG solution. The flask was swirled,
covered with stopper, and incubated at 37°C for 1h.
Following incubation time 1 ml of 0.5 M CaCl, and 4 ml
of 0.1M THAM (tris-hydroxymethyl aminomethane),
pH12 was added. The contents were filtered using
Whatman filter paper no. 2. Before filtering the blanks,
1ml of PNG was added. Finally, the absorbance of p-
nitrophenol (PNP) released was determined using a
spectrophotometer at 400 nm. The concentration of
PNP was estimated using a PNP standard calibration
curve. Results were expressed as pug PNP g' DW h™.
Soil dehydrogenase activity (DHA) reflects the metabolic
activity in the soils (Wolinska and Stepniewska 2012). It
was determined using 2,3,5-triphenyltetrazolium chlor-
ide (TTC) reduction assay (Casida 1977). Six grams of
field moist 2 mm sieved soil was taken in a glass tube
(15 x 150 mm). To this, 0.06 g of CaCO;3; was added
along with 1 ml of 3% TTC solution. Blanks were also
created for each soil sample where TTC was not added.
The total volume of fluids was made to 3.5 ml (i.e.,, 3.5
ml autoclaved DI water in blanks and 2.5 ml in samples).

All the tubes were sealed using parafilm, starred, and in-
cubated at 37 °C for 24 h in dark. Following incubation
time, soil samples were transferred with methanol into a
50-ml graduated cylinder through Whatman filter paper
no. 5. The red methanolic extract of tri-phenyl formazan
(TPF) was determined using a spectrophotometer at 485
nm against soil banks. The concentration of TPF was es-
timated using a TPF standard calibration curve. Results
were expressed as ug TPF g 'DW h™'. Soil phenol oxi-
dase activity (PO) indicates oxidation of complex organic
compounds like lignin during decomposition (Luo and
Gu 2015). It was determined using the ABTS assay
(Floch et al. 2007). A total of 0.1g field moist 2 mm
sieved soil was taken in a 15-ml centrifuge tube and to
this 10ml of MUB solution (pH?2) in 200 pul of 0.1 M
ABTS (2,2"-azino-bis(3-ethylbenzothiazoline-6-sulphonic
acid)) solution was added. The mixture was incubated at
30°C for 5 min in a water bath following which the mix-
ture was centrifuged at 12000 rpm for 2 min at 4 °C. The
oxidation rate to ABTS" was determined in the super-
natant at 420nm. Results were expressed as pmol
ABTS" g’1 DW min~'. Microbial biomass carbon (MBC)
was determined by the fumigation-extraction method
(Vance et al. 1987). Ten grams of field moist 2 mm
sieved soil was fumigated with ethanol-free chloroform
for 24'h in a vacuum desiccator and the other 10 g was
not fumigated. Forty milliliter of 0.5 M K,SO, solution

Table 1 Basic soil physicochemical properties (mean + standard deviation) in the study area

Ridge pH Bulk density (g cm ™) TC (%) TN (%)

Southern Ridge 6.98 (0.02) 1.07 (041) 0.65(0.20) 0.06 (0.06)
Central Ridge 6.91 (0.04) 1.11 (0.31) 1.56 (0.25) 0.12 (0.07)
South-Central Ridge 6.94 (0.02) 1.06 (0.49) 1.09 (0.17) 0.11 (0.00)
Northern Ridge 6.85 (0.04) 1.11 (0.32) 1.20 (0.34) 0.11 (0.05)

TC total carbon; TN total nitrogen
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was used to extract both fumigated and non-fumigated
samples. Samples were shaken for 1h in a rotary shaker.
The extract was filtered using Whatman filter paper no.
42. The carbon content in the filtrate was measured
using Liqui TOC II analyzer. MBC was calculated as
MBC = 2.22Ec, where Ec is organic carbon from fumi-
gated soil—organic carbon extracted from non-
fumigated soils (Wu et al. 1990). MBC was expressed as

ug Cg.

Statistical analysis

Data were analyzed by two-way ANOVA at which sea-
son (monsoon, post-monsoon, winter, and post-
monsoon) and soil depth (0-10 cm and 10-20 cm) were
selected as factors. To determine pair-wise differences
by post hoc tests, the data were submitted to one-way
ANOVA for each season. Tukey’s HSD post hoc test
was applied. A p < 0.01 or 0.05 level of significance was
adopted throughout. Pearson’s correlation analysis was
also carried out by including all the soil microbiological
and physical variables measured in the study. The correl-
ation pattern was further examined by principal compo-
nent analysis (PCA). All the statistical analysis was done
using IBM SPSS 16, statistical software.

Results

Physical and chemical variables

Soil moisture and temperature both showed significant
seasonal variation during the study period (p < 0.01).
Soil temperature ranged from 14.4 to 34°C (Fig. 2b). It
was observed highest in pre-monsoon and post-
monsoon and lowest in winter. Soil moisture was highest
in monsoon and lowest in winter. It ranged from 3.07 to
17.12% and 2.97 to 12.97% under 0-10 and 10-20 cm,
respectively in all the Delhi Ridges (Fig. 3a, b). The sea-
sonality of soil moisture coincided with the seasonal pat-
tern of precipitation. Significant seasonal variations were
also obtained (p < 0.05) in SOC (Table 2), which was
highest in winter and lowest in monsoon. SOC varied
within the range of 0.84 to 2.04% and 0.26 to 1.74% in
0-10 and 10-20 cm depth, respectively (Fig. 3c, d). It
also showed variations across depths and observed
higher values in 0—10 cm depth (Table 2) in all the Delhi
Ridges.

Seasonal variation in soil respiration

The highest soil respiration was observed in the mon-
soon season when the precipitation was at a peak
(Fig. 4). Soil respiration showed significant seasonal
variation (F value: 136.26 and p < 0.01) and showed
maximum values in monsoon season in all the Delhi
Ridges. It ranged from 0.57 to 3.31 umol CO, m™2s™".
Minimum soil respiration occurred in the winter sea-
son as the precipitation is lowest and soil temperature
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and soil moisture are minimum during the winter
season.

Microbiological variables

Seasons and depth significantly affected all the enzym-
atic activities except B-glucosidase, which is affected by
depth only. Variations in seasons and depth significantly
influenced (p < 0.05) dehydrogenase and phenol oxidase
(Table 2). The interaction between season and depth
was influential for dehydrogenase (p < 0.05). B-
glucosidase ranged from 29.14 to 21259 pg PNP g™
DW h™" and 11.15 to 123.48 ug PNP g* DW h™* in 0-
10 cm and 10-20 cm depth, respectively (Fig. 5a, b). De-
hydrogenase showed higher values in monsoon. It varied
from 0.26 to 16.47 pg TPE g' DW h™' and 0.11 to
895ug TPF g' DW h™' in 0-10 cm and 10-20 cm
depth, respectively (Fig. 5¢, d). Similarly, phenol oxidase
showed higher values in post-monsoon and monsoon
season and lower in pre-monsoon and winter seasons. It
ranged from 4108.60 to 10187.55 umol ABTS* g~' DW
min~" and 4102.95 to 7393.87 umol ABTS® g™' DW
min~" in 0—10 cm and 10-20 cm depth, respectively (Fig.
5e, f).

Soil MBC showed clear significant (p < 0.05) seasonal
variation during the study period (Table 2). Soil MBC
varied with seasons and ranged from 49.88 to 484.52 ug
C g ' and 17.08 to 358 ug C g * in 0-10 and 10-20 cm
depth, respectively (Fig. 6a, b) in all the Delhi Ridges.
MBC was highest in monsoon season and lowest in the
winter season. MBC also showed significant (p < 0.05)
variation among the two depths and was observed higher
in 0-10 cm than in 10-20 cm depth (Table 2).

Correlation analysis

A positive significant correlation was observed between
MBC and other studied soil microbiological and physical
variables (dehydrogenase, phenol oxidase, soil respir-
ation, soil temperature, and soil moisture). MBC was ob-
served to be negatively correlated with SOC (Table 3).
Soil respiration showed a positive correlation with MBC,
dehydrogenase, phenol oxidase, soil temperature, and
soil moisture. B-glucosidase showed a significant positive
correlation with SOC. However, it was not correlated
with other microbiological and physical factors (Table
3). Dehydrogenase showed a positive significant correl-
ation with respiration, MBC, and soil moisture, while a
negative correlation was observed with SOC (Table 3).
Phenol oxidase showed a positive correlation with MBC,
soil respiration, soil temperature, and soil moisture, but
a negative correlation was observed with SOC and -
glucosidase. In 10-20 cm depth, correlation patterns
were found to be similar except for a negative correl-
ation and no correlation of B-glucosidase and phenol
oxidase was observed with soil temperature (Table 3).
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Table 2 Results of two-way ANOVA (season and depth) for
microbiological variables

Df F value
BA DHA PO MBC SOC
Season 3 2,08 5738 18617 92807  11.33"
Depth 1 26307 15387 401 58557 4456
Sexdp 3 023 644" 077 579" 046

df degree of freedom; Se season; dp depth; se x dp interaction season and
depth; BA B-glucosidase activity; DHA dehydrogenase activity; PO phenol
oxidase activity; MBC microbial biomass carbon; SOC soil organic carbon

The principal component analysis (PCA) was carried out
on all the studied soil microbiological and physical vari-
ables as factors and the analysis revealed that two princi-
pal components with eigenvalue more than one are
responsible for the variance observed in the studied fac-
tors. The component contributing to maximum variance
becomes the first PC (principal component) and others
become the second PC. In 0-10 cm depth, the PCA axis
F1 (Fig. 7a) accounted for 56.17% of total variation
among the studied soil parameters and the loadings
values are 0.961 (soil respiration), 0.903 (soil moisture),
0.849 (MBC), -0.736 (SOC), 0.724 (soil temperature),
0.716 (DHA), 0.643 (PO), and -0.203 (BG) while PCA
axis F2 accounted for 22.25% variation with loading
values: 0.868 (BG), 0.618 (SOC), 0.583 (DHA), 0.337
(MBC), -0.366 (PO), 0.287 (soil moisture), —0.223 (soil
temperature), and 0.067 (soil respiration). Similarly, in
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10-20 cm depth, the PCA axis F1 (Fig. 7b) accounted
for 54.17% of total variation among the studied soil pa-
rameters and the loadings values are 0.960 (soil respir-
ation), 0.879 (soil moisture), 0.869 (MBC), 0.709 (DHA),
0.699 (soil temperature), —0.638 (SOC), 0.597 (PO), and
-0.358 (BG) while PCA axis F2 accounted for 22.63%
variation with loading values: 0.817 (BG), and 0.642
(SOC), 0.610 (DHA), 0.364 (MBC), -0.324 (PO), 0.243
(soil moisture), —0.227 (soil temperature), 0.096 (soil
respiration).

Discussion

Our study indicated that studied soil microbiological ac-
tivity and MBC showed a clear seasonal pattern in all
the Delhi Ridges. Soil respiration showed clear seasonal
variation and was highest in monsoon season and lowest
in winter season. The seasonal pattern of soil respiration
was as per previous findings of Tang et al. (2006) and
Meena et al. (2020), suggesting that seasonal changes in
soil respiration are correlated with soil moisture and soil
temperature. Lou et al. (2004) showed a correlation of
soil respiration, soil moisture, and MBC. Additionally,
we observed the correlation of soil respiration with the
above factors as well as with enzyme activity (dehydro-
genase and phenol oxidase). High soil respiration during
monsoon is attributed due to an increase in microbial
activity during the rewetting of soil after a period of dry-
ing (Salazar et al. 2018). The microbial activity utilizes C
from SOC and releases it in the atmosphere in the form
of CO, resulting in an increase in C emission from soil
to atmosphere, thereby decreasing the soil C storage
(Wang et al. 2013). Soil temperature and moisture
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directly or indirectly affect respiration-related enzyme
activity by affecting the supply of the substrates (Kishi-
moto-Mo et al. 2015).

Soil enzymes have a major role in biochemical pro-
cesses occurring in the soil environment as they are the
core mediators of organic matter decomposition, nutri-
ent cycling, and energy transfer (Shao et al. 2015). In the
present study, dehydrogenase and phenol oxidase activ-
ity showed significant seasonal variation but B-glucosi-
dase activity did not show any variation concerning the
seasons. Every enzyme is characterized by its substrate
and ability to catalyze specific biochemical reactions
(Song et al. 2012). B-glucosidase activity catalyzes the hy-
drolysis of B-glucosides, thereby producing glucose and
thus the enzyme complex is involved in the decompos-
ition of plant remains (Hayano and Tubaki 1985). Ac-
cording to Baldrian et al. (2010), enzyme activities in
forest soils show seasonal variation. However, in our
study B-glucosidase activity did not show seasonal varia-
tions and correlation with soil moisture. Similar results
were also obtained by Hedo et al. (2015) in semi-arid
dry forest strands. The activity of B-glucosidase is likely
to be controlled by organic matter in the soil and the
varying inputs of the litter with a season do not affect
the activity of this enzyme (Wick et al. 2002). We ob-
tained a positive significant correlation (r = 0.64, p <
0.01) of B-glucosidase with SOC (Table 3), as the en-
zyme mainly participates in mineralization and cycling
of carbohydrates in the soil (Wick et al. 2002). It is in-
volved in the hydrolytic conversion of cellulose as a frac-
tion of soil organic matter pool rather than total carbon
(Wick et al. 2002). Positive correlations of -glucosidase
with organic C was also reported by Eivazi and Tabata-
bai (1990) and Wick et al. (2002). The activity of dehy-
drogenases is fundamental part of enzymes system
occurring in living organisms because of the involve-
ment of several dehydrogenases in the respiratory path-
way (Wolinska and Stepniewska 2012). Dehydrogenase
activity is intracellular and the enzyme complex partici-
pates in the transfer of electrons (Nannipieri et al. 1990).
Dehydrogenase activity serves as an indicator of micro-
bial activity in such semi-arid soils (Ros et al. 2003), this
can be observed from a positive correlation between
MBC and dehydrogenase activity in our study, as when
the number of microbes increases, production of de-
hydrogenase enzyme also increases. With significant sea-
sonal variation, dehydrogenase activity was found higher
in monsoon season suggesting that soil moisture has a
significant role in the production of dehydrogenase en-
zyme. The survival and the activity of soil microorgan-
isms are known to be impacted by the availability of
water (Uhlirova et al. 2005). Low water availability re-
sults in lowering of intracellular water potential, thereby
reducing hydration, and inhibiting microbial activity
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(Wall and Heiskanen 2003). Microbial communities suf-
fer starvation during periods of moisture limitation;
hence, the drought stress is considered as the most com-
mon environmental stress for soil microorganisms
(Wolinska and Stepniewska 2012). As the activities of

involved in C cycling (Salazar et al. 2011), thus, dehydro-
genases are associated with microbial biomass and af-
fects the decomposition of organic matter which is
reflected by high soil respiration (Zhang et al. 2010).
Hence, we observed a positive significant correlation be-

dehydrogenases in different forest ecosystems are tween dehydrogenase activity and soil respiration.
Table 3 Pearson’s correlation matrix between soil parameters at 0-10 cm and 10-20 cm depth

RESP BA DHA PO MBC SOC ST SM
0-10cm
RESP 1 -0.13 0.74** 0.66** 0.79%* —0.66** 0.61%* 0.88**
BA 1 0.25 —0.38** 0.10 0.64** -0.18 -0.00
DHA 1 0.26 0.73%* -0.17 0.24 0.84**
PO 1 0.33% —0.59%* 0.29%* 048**
MBC 1 -0.40** 0.63** 0.82**
SOC 1 —0.76** -046"*
ST 1 0.52%*
SM 1
10-20cm
RESP 1 -0.26 0.72%* 0.51%* 0.86** —0.57** 0.61%* 0.87%*
BA 1 017 —047%* -0.00 0.65** —0.29%* -0.20
DHA 1 0.30* 0.80** —-0.06 0.23 0.75**
PO 1 0.35% -046"* 0.22 042%*
MBC 1 0.31* 0.56** 0.77%%
SOC 1 0.63** -0.33%
ST 1 0.53**
SM 1

RESP soil respiration; BA B-glucosidase activity; DHA dehydrogenase activity; PO phenol oxidase activity; MBC microbial biomass carbon; SOC soil organic carbon; ST

soil temperature; SM soil moisture
“p < 0.05, significant correlation
“p < 0.01; n = 48; significant correlation
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Phenol oxidase is considered as an indicator of the
breakdown of recalcitrant carbon pool, thereby contrib-
uting to heterotrophic soil respiration (Sun et al. 2018).
Phenol oxidase is an oxidative enzyme having a key
function in lignin decomposition (Grandy et al. 2008).
Phenol oxidase activity in the present study fluctuated
significantly among the seasons and was found higher in
monsoon and post-monsoon seasons. The results are as
per the previous study by Zhou and Zhang (2014) who
suggested that seasonal variations in oxidative enzyme
activity are influenced by soil water content and soil
temperature, but it is mainly attributed to seasonal
changes in soil moisture. High temperature during pre-
monsoon was not able to induce high oxidative enzyme
activity probably due to low moisture content. But, after
rainfall events during monsoon, the activity of phenol
oxidase increases with an increase in soil moisture. Cor-
relation analysis in our study also indicated that phenol
oxidase activity is dependent more on soil moisture than
soil temperature. The water limitation may lead to a re-
duction in enzyme production because of moisture
stresses, which include restricted nutrient uptake, myce-
lium growth, cell proliferation, substratum penetration,
and cell desiccation (in extreme cases) (Toberman et al.
2008). As seasonal variation in soil moisture and
temperature affects phenol oxidase activity, which is re-
sponsible for C transformation; hence, lignin degrad-
ation and C mineralization also vary with soil moisture
and temperature (Zhou and Zhang 2014). This can be
observed from significant positive correlation of phenol
oxidase with soil respiration observed in our study. MBC

showed the highest value in monsoon season and lowest
in the winter season. It is quite evident that in arid and
semi-arid regions, water controls most of the biological
processes occurring in soil (Collins et al. 2008). The
range of MBC reported in the present study was 49.8 to
484.52 ug g ' which falls approximately in reported
range (61 to 2000 pug g ') by Vance et al. (1987), Henrot
and Robertson (1994) for various temperate and tropical
forest soils. A similar seasonal pattern in MBC was re-
ported by Yang et al. (2010) and MBC was reported
higher in summer when rainfall was higher. In the
present study, the seasonality in MBC was found signifi-
cantly correlated with soil moisture (R* = 0.82; p < 0.01)
in 0-10 cm and (R?* = 0.77; p < 0.01) in 10—20 cm (Table
3). Similar results were observed in a pine plantation in
the subtropical zone by Chen et al. (2003). A meta-ana-
lysis of global MBC across terrestrial ecosystems by Xu
et al. (2013) showed 16.7 Pg C in the 0-30 cm of soil.
MBC depends greatly on SOC and its availability for mi-
crobial activity. In arid and semi-arid conditions, wetting
and rewetting cycles were pre-dominant and major part
of soil microbial biomass become dormant during the
dry period (Lopez-Sangil et al. 2018). However, the
rewetting results in an enhancement in MBC as SOC ac-
cumulation occurred during the dry period (Xu et al.
2018). In the present study, SOC showed the highest
value during the winter season and lowest during the
monsoon season. A study by Garcia-Oliva et al. (2003)
reported an accumulation of organic matter during the
dry period which enhances microbial activity and bio-
mass in the wet season. Our study also presented similar
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results as the accumulation of SOC was observed during
the winter season (dry period) which later increased
MBC after soil moisture and temperature become
optimum for microbial growth. We found a significant
negative correlation of MBC with SOC. SOC is mainly
decomposed by soil micro-organisms and reduction in
microbial activity results in a decrease in MBC, thereby
decreased SOC decomposition rate results in the accu-
mulation of SOC (Shao et al. 2015).

Conclusion

Seasonality prevailing in Delhi Ridge had a significant in-
fluence on MBC and enzymatic activities. All the studied
microbiological processes (except B-glucosidase activity)
were found higher in the monsoon season because of
optimum moisture and temperature during the period.
This can also be observed by a significant positive correl-
ation of MBC and enzymatic activity (dehydrogenase and
phenol oxidase) with soil moisture, which is considered an
important factor controlling soil processes occurring in
semi-arid conditions. The enzymes considered in our
study were involved in C cycle; thus, it is important in un-
derstanding the C dynamics in such semi-arid forests. The
study also focused on correlation among enzyme activities
and soil respiration and a significant positive correlation
of enzymatic activities (dehydrogenase and phenol oxi-
dase) suggested that they play a significant role in soil res-
piration. This study enlarges the knowledge about
different microbiological processes and their dynamics
which are important in understanding their role in C cyc-
ling and C dynamics in semi-arid ecosystems. Although
semi-arid land plays a small role in carbon dynamics, glo-
bally, it represents one-third of terrestrial habitat and thus
sensitive to large-scale environmental changes.
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