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Soil moisture controls the spatio-temporal
pattern of soil respiration under different
land use systems in a semi-arid ecosystem
of Delhi, India
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Abstract

Background: Soil respiration (SR) is a critical process for understanding the impact of climatic conditions and land
degradation on the carbon cycle in terrestrial ecosystems. We measured the SR and soil environmental factors over 1
year in four land uses with varying levels of disturbance and different vegetation types viz., mixed forest cover (MFC),
Prosopis juliflora (Sw.) forest cover (PFC), agricultural field (AF), and vegetable field (VF), in a semi-arid area of Delhi, India.
Our primary aim was to assess the effects of soil moisture (SM), soil temperature (ST), and soil microbial activity (SMA) on
the SR.

Methods: The SR was measured monthly using an LI-6400 with an infrared gas analyser and a soil chamber. The SM
was measured using the gravimetric method. The ST (10 cm) was measured with a probe attached to the LI-6400. The
SMA was determined by fluorescein diacetate hydrolysis.

Results: The SR showed seasonal variations, with the mean annual SR ranging from 3.22 to 5.78 μmol m−2 s−1 and
higher SR rates of ~ 15–55% in the cultivated fields (AF, VF) than in the forest sites (MFC, PFC). The VF had significantly
higher SR (P < 0.05) than the other land uses (AF, PFC, MFC), which did not vary significantly from one another in SR (P
< 0.05). The repeated measures ANOVA evaluated the significant differences (P < 0.05) in the SR for high precipitation
months (July, August, September, February). The SM as a single factor showed a strong significant relationship in all the
land uses (R2 = 0.67–0.91, P < 0.001). The effect of the ST on the SR was found to be weak and non-significant in the
PFC, MFC, and AF (R2 = 0.14–0.31; P > 0.05). Contrasting results were observed in the VF, which showed high SR
during summer (May; 11.21 μmol m−2 s−1) and a significant exponential relationship with the ST (R

2 = 0.52; P <
0.05). The SR was positively related to the SMA (R2 = 0.44–0.5; P < 0.001). The interactive equations based on the
independent variables SM, ST, and SMA explained 91–95% of the seasonal variation in SR with better model
performance in the cultivated land use sites (AF, VF).

Conclusion: SM was the key determining factor of the SR in semi-arid ecosystems and explained ~ 90% of the
variation. Precipitation increased SR by optimizing the SM and microbial activity. The SMA, along with the other soil
factors SM and ST, improved the correlation with SR. Furthermore, the degraded land uses will be more
susceptible to temporal variations in SR under changing climatic scenarios, which may influence the carbon
balance of these ecosystems.
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ecosystems
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Background
Soil respiration (SR) is the second largest flux of carbon
(C) between terrestrial ecosystems and the atmosphere
(Hanson et al. 2000). SR is considered a key process in
the terrestrial C cycle, and it releases 98 Pg C per year
into the atmosphere (Bilandžija et al. 2016; Zhao et al.
2017). Any small variation in SR has a significant impact
on the carbon dioxide (CO2) concentration in the at-
mosphere which in turn affects the global C cycle (Black
et al. 2017). Therefore, understanding the dynamics of
the SR in any ecosystem is critical for combatting climate
change. SR has two components: auto- (roots and rhizo-
sphere) and heterotrophic respiration (soil microbes and
soil fauna) (Chen et al. 2017). Several abiotic and biotic
factors, including soil temperature (ST), soil moisture
(SM) (Bao et al. 2016), availability of C substrates for mi-
croorganisms, soil microbial activity (SMA) (Tang et al.
2018), soil fertility (Butnor et al. 2003), plant photosyn-
thetic activity (Zhang et al. 2013a, 2013b), and soil
organisms (Rai and Srivastava 1981), influence the rate
of soil CO2 efflux. SR is also affected by various manage-
ment activities, including land use change, which con-
tributes 12.5% of the global CO2 emissions to the
atmosphere, mainly as a result of deforestation (IPCC
2013). Several studies have reported the potential im-
pacts of cultivation and deforestation activities on the
soil C storage and efflux of CO2 (Lou et al. 2004; Rey
et al. 2011; Peri et al. 2015).
Climate change has a strong impact on precipitation

patterns across the globe (Arredondo et al. 2018;
Darrouzet-Nardi et al. 2018). Changes in precipitation
patterns in any terrestrial ecosystem will ultimately affect
the SM, which in turn influence SMA, soil organic matter
(SOM) decomposition pattern, and SR (Bao et al. 2019).
Arid and semi-arid ecosystems cover approximately 41%
of the terrestrial land surface of the Earth (Wang et al.
2014). The unpredictable and random precipitation
events in semi-arid ecosystems interact with the seasons
and the functioning of auto- and heterotrophic ecosys-
tem processes (Miao et al. 2017). Such events are vulner-
able to climate change and can have crucial impacts on
SR, often causing a pulse of CO2 to be emitted into the
atmosphere (Shen et al. 2016; Gu et al. 2018). There
have been studies on the SR in arid and semi-arid eco-
systems with respect to annual flux measurements
(Subke et al. 2006; Sawada et al., 2016 b). The SM is con-
sidered an important environmental determinant con-
trolling the rate of SR in these ecosystems (Rey et al.
2002; Conant et al. 2004; Jarvis et al. 2007; Miao et al.
2017). The SM can limit the widely accepted positive lin-
ear and exponential relationship between the SR and ST
by limiting the soil microbial activity (SMA) under low
moisture conditions (Wang et al. 2014). Therefore, in
such an ecosystem, both the ST and SM strongly

influence respiration rates, and their relative impor-
tances can vary seasonally and spatially (Reichstein et al.
2002; Tang and Baldocchi 2005; Sun et al. 2018). Hence,
we assume that the SR in semi-arid ecosystems is limited
by the SM and SMA in the different land use/land cover
systems.
Delhi has a unique forest ecosystem located on ridges

that are extensions of the Aravalli hills; these ridges are
32 km long and serve various ecological, environmental,
and social functions. The Delhi ridge has been desig-
nated as a reserved forest and is managed mainly with
the objectives of increasing forest cover, biodiversity,
and conservation through public participation and re-
duction in monoculture plantations and encroachments
(Sinha 2014). Delhi is also considered one of the most
polluted cities in the world. The land use pattern of
Delhi showed that 15.00% (221.4 km2) of the total geo-
graphical area comprised the net sown area, 8.07% (119
km2) was the current fallow area, 6.71% (98.9 km2) was
culturable wasteland, and 1.00% (14.8 km2) was forest
cover (FSI 2017). Previous studies on SR have been con-
ducted in temperate and riparian subtropical regions of
India (Jha and Mohapatra 2011), and the data from the
semi-arid ecosystems of India are very limited. Our
study will provide relevant data on SR for future research
in the semi-arid ecosystems of India. The objectives of
this study were (1) to measure and compare the spatio-
temporal variations in SR in the different types of land
use systems in a semi-arid area of Delhi, India, and (2)
to understand the impacts of SM, ST, and SMA and/or
the interactive effect of these factors on SR.

Methods
Study area
The study was carried out in a semi-arid area of Delhi,
which is part of the National Capital Territory (NCT) of
India (28.40° N to 28.41° N, 76.84° E to 77.40° E) and
covering an area of 1483 km2 (Fig. 1). The area is
bounded by the Indo-Gangetic alluvial plains in the
north and east, the Thar Desert in the west, and the
Aravalli Range and the hill ranges in the south. Delhi lies
within the interior of the northern plains of the Indian
subcontinent. The climate of Delhi is greatly influenced
by the Himalayas and the Thar Desert due to its proxim-
ity. The climate of the area is semi-arid and dry except
during the monsoon season and is characterized by hot
summers (April–June), monsoons (July–September),
cool and dry winters (November–December), and two
periods of pleasant transitional weather, i.e., autumn
(October) and spring (February to March). The climate
is influenced by two weather events, i.e., the western dis-
turbances and south-westerly winds. The study area re-
ceives most of the annual rainfall during the monsoon
season. The vegetation of the study area is ravine thorn
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forest, which belongs to the ecosystem type of tropical
thorn forest (6B/C) (Champion and Seth 1968) and
covers 33% of the total forest area and 67% of plantation
and tree outside forest (TOF) areas. The vegetation is
mainly dominated by middle-story thorny trees, which
are interspersed with open patches due to their scattered
distribution (Sinha 2014). The soil type on the ridge has
been reported as sandy loam to loam (Chibbar 1985).
Prosopis juliflora (Sw.) DC, which is an exotic species, is
the dominant tree in the forests. Acacia nilotica (L.)
Delile, Acacia leucophloea (Roxb.) Willd., Salvadora
oleoides Decne, and Cassia fistula L. are among the
commonly found native trees (Sinha 2014; Meena et al.
2016). The naturally growing shrubs in the forests are
Justicia adhatoda L., Capparis sepiaria L., Carissa
spinarum L., Jatropha gossypifolia L., and Opuntia
dillenii L.

Land use site description
To study the spatio-temporal variation in SR, we chose
four different land uses based on the levels of human
disturbance (mainly cultivation) and plant species
cover (Fig. 1). The land uses were (1) mixed forest cover
(MFC) as the native vegetation cover (28.61° N; 77.17°
E); (2) P. juliflora dominated forest cover (PFC) as the
exotic tree cover (28.69° N; 77.22° E); (3) an agricultural
field (AF), which was located near the Nazafgarh drain
(28.54° N; 76.87° E); and (4) a vegetable field (VF) lo-
cated along the Yamuna flood plains (28.52° N; 77.34°
E). The vegetation of the PFC stand was characterized
by a total tree density (TD) of 350 individuals ha−1 and a

mean basal area (MBA) of 25.05 m2 ha−1. Under the
MFC, TD and MBA were higher than under the PFC, at
400 individuals ha−1 and 117.26 m2 ha−1, respectively.
However, under the MFC, P. juliflora was found to be
the most dominant tree species with the highest TD
(200 individuals ha−1), but other associated tree species
viz., Pongamia pinnata L. (50 individuals ha−1), Azadir-
achta indica Juss. (50 individuals ha−1), A. nilotica (75
individuals ha−1), and C. fistula (25 individuals ha−1)
were also observed (Meena et al. 2019). The maximum
basal area (BA) values were estimated for A. nilotica
(160.52 m2 ha−1) and C. fistula (147.37 m2 ha−1),
whereas the BA was comparatively low for P. juliflora
(95.74 m2 ha−1). The AF was mainly cropped with Triticum
aestivum L. during winter (October–May) and Phaseolus
vulgaris L. (September–October). The field was irrigated by
a tube well during the growing season. The VF field was
mainly cultivated with Capsicum annum L. throughout
the year except between September and November,
during which Brassica oleraceae L. was grown. The
VF was regularly irrigated by water pumped from the
Yamuna River. The soil type in PFC, MFC, and VF
was sandy loam, whereas in AF, it was loamy sand.

Soil respiration measurements
The SR was measured in the selected land use systems
from April 2012 to March 2013 with a LI-6400 (LI-COR
Inc., Lincoln, NE, USA), which consisted of an infrared
gas analyser (IRGA) and a soil chamber (LI-6400-09) of
962 cm3 in volume and 72 cm2 area. The SR was mea-
sured with a stratified random sampling design in each

Fig. 1 Map of the study area (Delhi) showing the land use sites. PFC Prosopis juliflora forest cover, MFC mixed forest cover, AF agriculture field and
VF vegetable field
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land use type to account for the spatial variability in soil
properties and vegetation cover. Each measurement was
the mean value of three observations at each sampling
site. Collars made from polyvinyl chloride (PVC) pipes
(10 cm diameter and 6 cm height) were gently inserted 2
cm into the soil, leaving approximately 4 cm of the col-
lar above the soil surface at each point for 24 h prior to
the SR measurement to minimize any disturbance during
the measurement. Before taking the measurement, the
soil surface within the collar was kept free of any live
vegetation and residues by removing the seedlings and
their roots to avoid autotrophic respiration. All measure-
ments were conducted in the morning between 09:00
and 11:00 a.m. to avoid the high midday temperatures in
the study region (Lou et al. 2004). The soil chamber was
placed on the PVC collar and fixed to the ring to record
the SR inside the collar. Before the SR measurement, the
concentrations of CO2 within the soil chamber were
lowered to below the ambient CO2 concentration, and
then the increase in CO2 was logged until it stabilized.

Soil sampling and analysis
Soil samples were collected from five different points at
0–10 cm depth and pooled together to obtain a composite
sample for each land use type. The visible root mass was
removed from the soil samples by hand. The SM content
was measured with the gravimetric method by oven dry-
ing approximately 50 g of fresh soil at 105 °C until it
reached a constant weight and then weighing it to note
the dry weight. The ST, up to 10 cm, was measured with a
probe attached to the LI-6400. The ST readings were re-
corded at the same time as the SR readings.
The soil samples were passed through a 2-mm sieve,

ground in a mortar with a pestle, and stored at room
temperature for further analysis. The soil carbon (SC)
and soil nitrogen (SN) concentrations were measured
with an Elementar CHNS analyser. The SMA was deter-
mined by fluorescein diacetate (FDA) hydrolysis according
to the method of Adam and Duncan (2001). A 2-g moist
and sieved soil sample was taken in a conical flask and
mixed with 15 ml potassium phosphate buffer (60 mM)
with a pH of 7.6. To the soil, 0.2 ml of FDA stock solution
(1000 μg FDA ml−1) was added to start the reaction. The
blanks were prepared without the addition of FDA. The
samples were shaken at 100 rev min−1 in an orbital incu-
bator shaker at 30 °C for 20 min. After incubation, a 15 ml
chloroform:methanol (2:1) solution was added to the soil
samples to terminate the reaction. The contents were then
centrifuged at 2000 rev min−1 for 3 min. Supernatants
from each sample were filtered through Whatman filter
paper No. 2. Standards were made by using a fluorescent
stock solution (2000 μg ml−1). The absorbance of the
standards and samples was measured at 490 nm using a
spectrophotometer (RIGOL, USA).

Data analysis
One-way analysis of variance (ANOVA) was used to
evaluate the variations in the SR, ST, SM, SMA, SC, and SN
among the different land use types using Tukey’s test at
P < 0.05. A repeated measures ANOVA was performed
on the SR data using the measurement months and land
uses (MFC, PFC, AF, and VF) as factors. Pearson ana-
lysis was performed to investigate the correlation of the
environmental factors with SR in all land uses. The linear
regression was used to study the relationship of the SR
with the SM and SMA. For the relationship of the SR with
the ST, exponential and nonlinear regression analysis
was done.
The interactive effect of the ST and SM on the SR was

determined by using two independent variable regres-
sion equations as described by Li et al. (2018) as follows:

SR ¼ a� SbT � ScM ð1Þ

SR ¼ a� ebST � ScM ð2Þ
The interactive effect of the ST, SM and SMA on the SR

was evaluated as follows:

SR ¼ a� SbT � ScM � SdMA ð3Þ

SR ¼ a� ebST � ScM � SdMA ð4Þ
SR ¼ aþ bST þ cSM þ dSMA ð5Þ

where a, b, c, and d are coefficients.
The criteria used for model selection were Akaike’s

information criteria (AIC) and the coefficient of deter-
mination (R2). The AIC was calculated as follows:
where RSS is the residual sum of squares, N is the

sample size, and p is the number of independent vari-
ables. The model with the lowest AIC and the highest R2

value was selected as the best-fitting model.

AIC ¼ N�Ln RSSð Þ þ 2 pþ 1ð Þ � N�Ln Nð Þ ð6Þ
All statistical analyses were performed using SPSS

version 16.0.

Results
The monthly climatic variables of the study area during
the SR measurement period are shown in Fig. 2. The air
temperature during winter reached a minimum of 6 °C
(January) and began rising in March, peaked in summer
(May and June) to a maximum of 41 °C, and then
declined in the monsoon season. The total precipitation
received during the study period was 719.98 mm, of
which 73% was received during the monsoon season
(July–September). High precipitation was also recorded
during spring (February), which contributed 15% of the
total rainfall.
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Seasonal variation in the soil environmental factors and
SR
The mean monthly ST (°C) was recorded to be high in
summer (May: 37.69 ± 1.94, 36.04 ± 0.99, 46.63 ± 1.8,
and 34.5 ± 0.09 in MFC, PFC, AF, and VF, respectively),
to gradually decline in the monsoon season (July–
September), and to be low in winter (November:
19.65 ± 0.11, 16.87 ± 0.11, and 18 ± 0.07 in MFC,
PFC, and AF, respectively; December: 19.5 ± 0.18 in
AF). The mean annual ST (°C) values were 26.33 ±
2.98, 25.42 ± 2.99, 29.36 ± 5.19, and 26.36 ± 3.06
for MFC, PFC, AF, and VF, respectively. There were
no significant differences in the ST values between
any land use sites (P > 0.05) (Fig. 3b). The ST was signifi-
cantly correlated with the SR only in the VF (R = 0.7;
Table 1), whereas in the other land uses, the relationship
was found to be non-significant.
For the SM content, no significant difference was

found among the PFC, MFC, and AF (P > 0.05), but a
significant different was found for the VF (P < 0.05). The
mean annual SM (%) values were 1.99 ± 0.92, 1.49 ±
0.94, 2.08 ± 0.9, and 3.97 ± 0.43 for MFC, PFC, AF, and
VF, respectively (Fig. 3c). The seasonal SM pattern was
influenced by the monthly rainfall (mm), which had high
values (%) in the monsoonal month of September (3.96
± 0.02 and 5.23 ± 0.02 in MFC and PFC, respectively)
and in February (5.9 ± 0.14 in AF). In the VF, a consist-
ently high SM was recorded throughout the year, with
maximum values in summer (May: 5.59 ± 0.14) (Fig. 4b).
The mean monthly SMA was significantly higher in the

forests (PFC and MFC) than in the cultivated sites (AF
and VF) (P < 0.05). The annual mean SMA (μg g−1 min−1)
was 7.95 ± 0.42, 7.55 ± 0.53, 2.98 ± 0.3, and 3.08 ± 0.33 in

the MFC, PFC, AF, and VF, respectively (Fig. 3d).
Similarly, the mean annual SC and SN (g kg−1) were also
significantly higher in the forests, i.e., 38.95 ± 0.21 and
3.85 ± 0.25 in the MFC, respectively, and 29.31 ± 2.07 and
3.13 ± 0.25 in the PFC, respectively, compared to those in
the arable land uses, i.e., 6.88 ± 0.32 and 0.75 ± 0.04 in the
AF, respectively, and 14.03 ± 0.43 and 1.31 ± 0.08 in the
VF, respectively (Fig. 3e, f). However, no significant correl-
ation of the SC or SN with the SMA was found at any of the
sites (Table 1). Similar to the SM pattern, the SMA was also
high in the monsoon season (July: 9.76 ± 0.24 in the
MFC; August: 4.02 ± 0.02 in the AF) and in February
(9.01 ± 0.01 and 5.34 ± 0.42 in the PFC and VF, re-
spectively) (Fig. 4c). Furthermore, the positive correl-
ation of the SMA with the SM with a significant
correlation (R = 0.62, 0.64 in MFC and VF, respectively)
suggests that the SM influences the seasonal SMA along
with SC and SN (Table 1).
SR showed a seasonal pattern with a peak in the mon-

soon season and a sharp decline in summer for the PFC,
MFC, and AF (Fig. 4d). The SR (μmol m−2 s−1) was the
lowest in summer (May), at 0.97 ± 0.27, 0.65 ± 0.14, and
0.53 ± 0.1 in the MFC, PFC, and AF, respectively, and
the highest in the monsoon season (September: 8.12 ±
0.31 and 7.9 ± 0.39 in the MFC and PFC, respectively)
and in February (9.42 ± 0.09 in AF). In contrast, in the
VF, the SR was high in summer (May; 11.21 ± 0.08) and
low in winter (November: 2.33±0.02). The SR in the VF
was significantly different from those of the other land
uses (P < 0.05). The mean annual SR was 3.22 ± 1.24,
2.57 ± 1.28, 3.75 ± 1.47 and 5.78 ± 1.39 μmol m−2 s−1 in
the MFC, PFC, AF, and VF, respectively (Fig. 3a). The
repeated measures ANOVA of the monthly SR evaluated

Fig. 2 Monthly average maximum and minimum air temperature (°C) and total precipitation (mm) for the period 2012–2013 in study area Delhi, India
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significant differences for the monsoonal months (July,
August, September) and February from rest of the year
(P < 0.05) and a significant interaction between the
monthly SR and the land use sites (F = 219.14, P < 0.05,
df = 6.38). A strong and significant correlation between
the SR and the SM (R = 0.82–0.95, P = 0.01) at all
land use sites suggested that the SM was an important
controlling factor of the SR. Furthermore, a significant
correlation of the SR with the SMA (R = 0.67–0.71, P
= 0.05) in all land uses except in the PFC (Table 1)
further supported the influence of microbial activity
on the SR.

Soil environmental factors controlling SR
The linear regression function effectively represented the
influence of the SM on the SR and showed a strong sig-
nificant positive interaction (R2 = 0.67–0.91, P < 0.001)
in all land uses (Fig. 5b). SM as a single factor explained
67–92% of the total variation in SR. However, the

exponential and nonlinear functions, considering the ST
alone, determined only 12–50% of the changes in SR.
The effect of the ST was found to be significantly posi-
tive only in the VF (R2 = 0.5, P < 0.05) and non-
significant at other sites (P > 0.05) (Fig. 5a). The effect of
the SMA alone was significant in the cultivated land uses
(R2 = 0.5 and 0.67 in the AF and VF, respectively, P <
0.05) and explained 15–67% of the total variation in SR
(Fig. 5c).
The model that used the interactive effects (equations

1 and 2) and considered the ST and SM as independent
variables showed an improved relationship in the VF
only (R2 = 0.87; Table 2). However, the model with SMA

along with SM and ST (equations 3, 4, 5) improved the
model parameters with comparatively low AIC values
and higher R2 values of 0.84, 0.95, 0.85, and 0.91 in the
MFC, PFC, AF and VF, respectively. However, a better
fit was obtained in the cultivated (AF, VF) sites than in
the forest land use (MFC, PFC) sites (Table 2). This

Fig. 3 Annual spatial variations of soil respiration (SR) and environmental factors among land uses. Mean annual SR soil respiration (a), ST soil
temperature (at 10 cm depth) (b), SM soil moisture (c), SMA soil microbial activity (d), SC soil carbon (e), and SN soil nitrogen (f) of PFC Prosopis juliflora
forest cover, MFC mixed forest cover, AF agriculture field and VF vegetable field in a semi-arid area. Standard error of each mean is represented over
each bar. Different letters denote significant (P < 0.05) differences among the four land uses sites (Tukey test after one-way ANOVA)
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suggests that the SR was controlled by the interaction of
the ST, SM, and SMA rather than by one factor.

Discussion
The main aim of our study was to understand the soil
factors (SM, ST, and SMA) that influence the rate of SR in
the different land use systems of the semi-arid area of
Delhi by using various regression equation models. The
obtained results clearly demonstrated that the SM alone
(90%) controlled the SR rates of the studied region. In
addition, the interactive models that consisted of the SM
and other factors, such as the ST and SMA, effectively ex-
plained the variations in SR. Compared to the reported
values for other semi-arid ecosystems, the annual mean
SR rates of the studied region (2.55–5.78 μmol m−2 s−1)
were higher than those of steppe ecosystems of Spain
(0.72–1.24 μmol m−2 s−1, Rey et al. 2011) and North

China (1.37–1.91 μmol m−2 s−1, Zeng et al. 2018) and
were comparable with those of the Loess Plateau in
China (2.03 to 3.23 μmol m−2 s−1, Shi et al. 2014).

Seasonal dynamics of SR
The variations in the rainfall pattern, intensity, and
frequency have significant impacts on the SM, causing
variation in SOM decomposition, SC mineralization, mi-
crobial activity, plant growth and species composition,
above- and belowground biomass production, and plant
phenological traits (Bao et al. 2019; Zhang et al. 2019).
We observed a strong seasonal variation in the SR across
all land uses, with higher SR rates during the rainy sea-
son, i.e., the hot-humid climate (July–September) when
SM was not limiting (Fig. 4d). This suggests that the SM
and ST would increase the production of aboveground
biomass as a result of the high availability of resources
for photosynthesis and the activity of the microorgan-
isms in the monsoon season compared to those in other
seasons (Zhou et al. 2014; Zhang et al. 2019). These re-
sults are in accordance with previous studies showing
seasonal SR in riparian and subtropical semi-arid regions
of India, where the highest CO2 effluxes were recorded
in monsoons (Jha and Mohapatra 2011; Arora and
Chaudhry, 2017). However, in dry seasons, soil water
stress conditions could have reduced microbial activity,
thereby decreasing SR (Li et al. 2018). This could also
explain the contrasting rise of SR in VF in summers
compared to other land use sites, as here, the SM content
is consistent because of regular irrigation due to its
proximity to the Yamuna River (Fig. 4b, d).
In this study, high rainfall increased the SM content

and the SR during the monsoon season by ~ 80–120% in
forest land uses compared to ~ 17–46% at the cultivated
sites. Furthermore, the effect of the sudden precipitation
events after the drought periods was evident in this
study, with an evident peak in the SR across all land uses
in February and June (Fig. 4d). Similar findings have also
been reported across various ecosystems (Smith and
Johnson 2004; Almagro et al. 2009, Rey et al. 2011;
Matteucci et al. 2015), suggesting that the rainfall after
long drought periods caused physical disruption of the
soil aggregates and increased the decomposition of the
OM, hence releasing more microbially derived soil CO2

(Li et al. 2018). Furthermore, rewetting of the soil re-
leases the microbial biomass C derived from microbial
death during the dry season (Emmerich 2003; Sawada
et al., 2016, b; Li et al. 2018). In our study, among the
land uses, the responses to these sudden precipitation
events appeared to be lower in the forested sites (MFC,
PFC) compared to in the cultivated or arable land uses
(AF, VF); a CO2 increase of 16–21% was seen in the VF
and AF compared to 9–14% in the MFC and PFC. Rey
et al. (2011) also observed similar results, where the CO2

Table 1 Correlation among soil environmental factors and SR in
different land uses

Land use SR ST SM SMA SC SN

MFC SR 1 0.10 0.91a 0.67b 0.20 0.10

ST 1 0.15 0.07 0.10 0.13

SM 1 0.64b 0.12 0.05

SMA 1 0.28 0.10

SC 1 0.92a

SN 1

PFC SR 1 0.08 0.95a 0.36 0.11 0.02

ST 1 0.15 − 0.02 0.32 0.39

SM 1 0.41 − 0.01 − 0.10

SMA 1 0.4 0.28

SC 1 0.97a

SN 1

AF SR 1 − 0.38 0.86a 0.67* 0.29 0.39

ST 1 − 0.44 − 0.16 − 0.40 − 0.49

SM 1 0.50 0.10 0.27

SMA 1 0.29 0.18

SC 1 0.90a

SN 1

VF SR 1 0.70b 0.82a 0.71* − 0.35 − 0.06

ST 1 0.34 0.33 − 0.22 − 0.19

SM 1 0.62b − 0.41 − 0.01

SMA 1 0.11 − 0.29

SC 1 − 0.06

SN 1

SR soil respiration (μmol m-2 s−1); ST soil temperature (°C) at 10 cm depth; SM
soil moisture (%); SMA microbial activity (μg g−1 min−1); SC soil carbon (g kg−1);
SN soil nitrogen (g kg−1); PFC Prosopis juliflora forest cover; MFC mixed forest
cover; AF agriculture field; VF vegetable field
aCorrelation is significant at the 0.01 level
bCorrelation is significant at the 0.05 level
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efflux was higher in degraded sites than in non-degraded
sites. This buffered response of SR rates at the forest
sites (PFC, MFC) could be explained by hydraulic lift
(the passive movement of the water present in the lower
soil layer), which maintains the fine root activity and the
other soil microorganisms and microbial activity during
prolonged dry conditions (Querejeta et al. 2007; Bauerle
et al. 2008; Almagro et al. 2009).

Factors controlling the variation in SR
The ST and SM are usually taken as the most important
factors controlling SR and can explain most of the vari-
ation. It has been well documented that more than 50%
of the spatio-temporal variation in SR is governed by
fluctuations in the ST and the SM content (Lloyd and
Taylor 1994; Davidson et al. 2000; Zhang et al., 2013a, b;
Bao et al. 2016). In our study, the regression function
considering only the SM was positively correlated with
the SR, accounting for approximately 90% of the seasonal
variability in the SR, and appeared to be more important
than the ST (Fig. 5b). Non-significant and weak nonlin-
ear and negative relationships were found between the

ST and SR in the forest sites and the AF, respectively
(Fig. 5a), which explained 15–30% of the variation in the
SR. This is in contrast with the well-documented strong
positive exponential relationship that has been reported
in previous studies, which have considered ST as the best
predictor of SR (Fang and Moncrieff 2001; Cao et al.
2004; Peri et al. 2015; Rubio and Detto 2017). Rey et al.
(2011), in a semi-arid steppe ecosystem, observed that
the ST controlled the SR during the winter season only,
and the effect disappeared at higher values, i.e., 0.5 over
20 °C. Furthermore, the SR decreased below 12–15% of
the SM with greater impact at the degraded sites.
Similarly, this study also observed the lowest SR during
the summer (May), with high ST coinciding with low SM
in the MFC, PFC, and AF. In contrast, in the VF, the
increase in the SM along with the ST enhanced the SR
(Fig. 4a, b). A nonlinear bell-shaped relationship between
the SR and ST in the forest land uses (MFC, PFC) (Fig. 5a)
suggests that the SR would have increased up to an
optimal temperature (~ 28 °C in our study) when the mi-
crobial activity was high, while at a still higher ST value
could have decreased the activity, hence reducing the SR

Fig. 4 Seasonal variation of soil respiration (SR) and environmental factors for the four land uses. Mean monthly ST soil temperature (at 10 cm
depth) (a), SM soil moisture (b), SMA soil microbial activity (c), and SR soil respiration (d) of PFC Prosopis juliflora forest cover, MFC mixed forest
cover, AF agriculture field, and VF vegetable field in a semi-arid area of Delhi. Standard error of each mean is represented over each line
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(Conant et al. 2004). However, the optimal temperature
for the SR varies depending upon the substrate availability
and can reach up to 35 °C (Richardson et al. 2012; Liu
et al. 2018). Therefore, in this ecosystem, the control of
the ST on the SR would only occur for short durations,
i.e., in the winter season (November–January), which
suggests that the SM was the single best predictive vari-
able for most parts of the year. However, in the VF,
high SM and ST values would have favored the SMA,
hence enhancing the SR rates. This is evident from the
significant positive exponential relationship between
the ST and SR. As concluded by the previous studies
among various semi-arid ecosystems, we can also
emphasize that the SM has the potential to modulate
the relationship of the ST with the SR and hence is con-
sidered the single best predictive variable of SR (Conant
et al. 2004; Rey et al. 2005; Jia et al. 2006; Almagro
et al. 2009; Jha and Mohapatra 2011; Tucker and Reed
2016). However, with the poor correlation between the
SM and ST (Table 1), it is assumed that stimulation of
SR was controlled not only by the optimal SM and ST
values but also by the seasonal variation in fine root
growth, microbial activity, and respiration (Adachi et al.
2006; Makita et al. 2018; Wang et al. 2019). A signifi-
cant positive relationship was found between the SR
and SMA in the MFC, AF, and VF (Fig. 5c). This was

evident in the results of the interactive models where
the inclusion of the SMA along with the ST and SM im-
proved the variation from 73 to 85% in the AF and 87
to 91% in the VF. However, in the forest land uses, the
improvement in the relationship was very small, with
only 83–84% and 94–95% in MFC and PFC, respect-
ively (Table 2).

Soil respiration in different land uses
Vegetation cover and/or types have a strong influence
on the belowground processes in terrestrial ecosystems
(Han et al. 2014). We observed higher SR in the culti-
vated land uses, with ~ 14 to 32% higher values in the
AF and ~ 44 to 56% higher values in the VF than in the
PFC and MFC (Fig. 3a). An earlier study (Xue and Tang
2018) reported an increase of 29% in the SR during the
conversion of free grazing grassland into cropland in a
semi-arid agropastoral ecotone in North China and sug-
gested that soil management activities, mainly tillage and
fertilizer input, decrease the level and storage of SC and
that the soil aeration enhances SMA and SOM decom-
position in cropland. In this study, the SC and SN varied
significantly among all land use sites and decreased by
76–82% in the AF and 52–64% in the VF compared with
the PFC and MFC (Fig. 3e, f). However, no correlation
was observed between the SC and the SN with the SR for

Fig. 5 Relationship between SR soil respiration and environmental factors among four land uses. ST Soil temperature (at 10 cm depth) (a), SM soil
moisture (b), and SMA soil microbial activity (c) (showing the best fit) of PFC Prosopis juliflora forest cover, MFC mixed forest cover, AF agriculture
field, and VF vegetable field
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any land use (Table 1). In contrast, there have been
studies that reported decreases in SR with SOC content
during the conversion of forest to cropland (Wang et al.
2007). These studies suggested that the intensive man-
agement activities in cultivated land uses would influ-
ence the soil structure (soil aeration and soil
aggregation), microbial functions, and decomposition of
SOM, which controls the soil C dynamics and alters the
SR processes (Smith et al. 2008; Kravchenko et al. 2011;
Fan et al. 2015). The significantly higher SMA in forest
land uses (PFC, MFC) compared to that in cultivated
sites (AF, VF) align with the results of other studies in
different ecosystems, such as semiarid steppe, tropical
water shed, forests, plantations, and degraded lands
(Acosta-Martínez et al. 2007; da Silva et al. 2012; Araujo
et al. 2013; Zhao et al. 2016). The low SC and SN content
in the cultivated sites (Fig. 3e, f) could have limited the
SOM decomposition by reducing the enzyme activity
and microbial biomass, which would significantly de-
crease the SMA (Son et al. 2003; Allison et al., 2005). In
contrast, the availability of high biomass, detritus
(Nsambimana et al. 2004), and fresh OM for microbiota
(Chen et al. 2005) increased the SMA in the forest soils
(Araujo et al. 2013).
Furthermore, the influence of plant photosynthesis

should also be considered when explaining the spatial
and temporal variation in the SR in different land uses.
The aboveground plant photosynthesis and the time re-
quired to transport the photosynthetic substrates from
the roots to the leaves and then to the soil regulate the
heterotrophic and autotrophic SR (Tang et al. 2005).
Zhang et al. (2018) reported that the inclusion of re-
cently added photosynthetic substrates and SM in SR
models explained the seasonal variation in the SR-ST
hysteresis relationship. In this study, the four land uses
experienced similar climatic conditions (air temperature
and precipitation); hence, the variation in the SR could
also be explained on the basis of the differences in the
vegetation types and growing seasons. Between the ar-
able land uses, in the VF, the significant increase in the
SR throughout the year that peaked in May could be re-
lated to the increased plant biomass due to the growth
of C. annum. Similarly, in the AF, the early and peak
growing seasons for T. aestivum (October–April) and P.
vulgare (August–October) could also have contributed
to the high aboveground and belowground biomass and
the increased SR rates during the monsoon season and
from February–March (Fig. 4d). On the other hand, dur-
ing the summers (non-growing season), the bare soil in
the AF with no root or shoot biomass had reduced SR in
May. In the forest land uses (MFC, PFC), the high herb-
aceous growth during the monsoon season (growing sea-
son) could have also been attributed to the enhanced SR.
This was supported by the findings suggesting that in

addition to the SM and ST, the changes in plant biomass
also influenced the spatial and temporal variation in the
SR (Nakano and Shinoda 2010; Geng et al. 2012; Han
et al. 2014).

Conclusion
Our results suggest that variations in precipitation
events affect the SM levels and in turn control the SR
rates in the semi-arid ecosystems of Delhi. Increased
numbers of precipitation events drastically altered the
SM levels and consequently resulted in higher SR rates
during the monsoon season in the studied ecosystem.
Furthermore, sudden rainfall events after a long drought
period release C from the soil and result in an ~ 20% in-
crease in the SR, with greater impact on the arable land
uses (AF, VF). Our findings emphasize that the seasonal
dynamics of the SR in semi-arid ecosystems are mainly
controlled by the SM patterns and can alone explain ~
90% of the variability. A strong positive linear fit be-
tween the SM and SR suggested that SM was the best pre-
dictor of the SR in the semi-arid ecosystems. Our study
also highlighted the relevance of the SMA in SR studies,
as the correlation improved from 73 to 85% in the AF
and 87 to 91% in the VF when the SMA was combined
with the SM and ST. Furthermore, it was inferred that in-
tensive management activities in cultivated land use re-
duce the SOM content and vegetation cover and may
alter the soil C balance in these ecosystems in the
future.
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