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Abstract

Background: Connectivity is an important landscape attribute in ecological studies and conservation practices and
is often expressed in terms of effective distance. If the cost of movement of an organism over a landscape is
effectively represented by a raster surface, effective distances can be equated with the cost-weighted distance of
least-cost paths. It is generally recognized that this measure is sensitive to the grid’s cell size, but little is known if it
is always sensitive in the same way and to the same degree and if not, what makes it more (or less) sensitive. We
conducted computational experiments with both synthetic and real landscape data, in which we generated and
analyzed large samples of effective distances measured on cost surfaces of varying cell sizes derived from those
data. The particular focus was on the statistical behavior of the ratio—referred to as ‘accuracy indicator’—of the
effective distance measured on a lower-resolution cost surface to that measured on a higher-resolution cost
surface.

Results: In the experiment with synthetic cost surfaces, the sample values of the accuracy indicator were generally
clustered around 1, but slightly greater with the absence of linear sequences (or barriers) of high-cost or
inadmissible cells and smaller with the presence of such sequences. The latter tendency was more dominant, and
both tendencies became more pronounced as the difference between the spatial resolutions of the associated cost
surfaces increased. When two real satellite images (of different resolutions with fairly large discrepancies) were used
as the basis of cost estimation, the variation of the accuracy indicator was found to be substantially large in the
vicinity (1500 m) of the source but decreases quickly with an increase in distance from it.

Conclusions: Effective distances measured on lower-resolution cost surfaces are generally highly correlated with—
and useful predictors of—effective distances measured on higher-resolution cost surfaces. This relationship tends to
be weakened when linear barriers to dispersal (e.g., roads and rivers) exist, but strengthened when moving away
from sources of dispersal and/or when linear barriers (if any) are detected by other presumably more accessible and
affordable sources such as vector line data. Thus, if benefits of high-resolution data are not likely to substantially
outweigh their costs, the use of lower resolution data is worth considering as a cost-effective alternative in the
application of least-cost path modeling to landscape connectivity analysis.

Keywords: Landscape connectivity, Effective distance, Raster-based least-cost path model, Accuracy, Spatial
resolution
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Background
With the continuing loss and fragmentation of wildlife
habitats worldwide over the past decades, landscape con-
nectivity—i.e., “the degree to which the landscape facili-
tates or impedes movement among resource patches”
(Taylor et al. 1993)—has received much attention in eco-
logical research (e.g., Merriam 1984; Taylor et al. 1993;
With et al. 1997; Tischendorf and Fahrig 2000; Fletcher
Jr et al. 2018; Wilkinson et al. 2018; Sullivan et al. 2019).
Since organisms need to move routinely for resource ex-
ploitation (Van Dyck and Baguette 2005) and interact
with different populations for reproduction (Stevens et
al. 2006; Michels et al. 2001; Wang et al. 2009; Cushman
and Lewis 2010; Spear et al. 2010), weakened landscape
connectivity may lead to the reduction of populations,
or even local extinction, of vulnerable native species
(Rudnick et al. 2012).
While distance between patches of habitats is a key

parameter to quantify landscape connectivity, its concept
and measurement have been defined in different ways
depending on context. More specifically, the level of
complexity and relevance of any distance defined de-
pends on how much we know about a target species and
its environment—from the species’ mobility (e.g., by
walking or flying), diet, habitat, and its interaction (e.g.,
predation) with other species to the environment’s vege-
tation, topography, climate, and spatial structure of its
components. The simplest one is Euclidean distance
along a straight line and its use, implicitly or explicitly,
assumes that organisms move at a constant rate across a
landscape. If the landscape contains impenetrable fea-
tures (e.g., water bodies and highways for terrestrial ani-
mals), this assumption may be modified such that
organisms move at a constant rate inside the penetrable
part of the landscape but do not move at all outside it.
The distance measured as such is useful to evaluate
structural connectivity (Tischendorf and Fahrig 2000;
Adriaensen et al. 2003; Chardon et al. 2003). More re-
cently, however, it has become increasingly common to
acknowledge heterogeneity in “the behavioral responses
of an organism to the various landscape elements”
(Tischendorf and Fahrig 2000) and modify Euclidean
distance based on the organism’s mobility through each
landscape element (e.g., Taylor et al. 1993; Graham
2001; Rayfield et al. 2010). The resulting distance is re-
ferred to herein as effective distance (Tischendorf and
Fahrig 2000; Ferreras 2001; Adriaensen et al. 2003;
Verbeylen et al. 2003; Broquet et al. 2006; Spear et al.
2010) but may be called effective geographical distance
(Michels et al. 2001), ecological distance (Royle et al.
2013; Sutherland et al. 2015), or functional distance
(Petit and Burel 1998) elsewhere.
One approach to measuring effective distance em-

ploys geospatial technologies such as Geographic

Information Systems (GIS). In particular, a raster-
based GIS may be used to discretize a landscape the-
matically into a set of single-attribute layers, each
corresponding to one landscape variable, and spatially
into a grid of (typically equal-sized square) cells, each
representing a location on the Earth’s surface. For ex-
ample, a land cover layer assigns each cell a value in-
dicating the most dominating (or critical, depending
on context) land cover type. If a layer is given in
which each cell is assigned a ‘cost’ (or additive, un-
desirable quantity) per unit length for a certain use
or activity within that cell, another useful function of
GIS computes the cost-weighted length of a path
(represented by a sequence of cells)—i.e., the sum of
the length between each consecutive cells in it multi-
plied by their average cost value—and finds a least-
cost path from a source to a destination—i.e., one
that has the minimum cost-weighted length of all
paths connecting them. See Sawyer et al. (2011) for a
critical review on the application of the least-cost
path function to landscape connectivity analysis and
linkage design.
A cost surface is often created from a land cover layer

by translating each land cover type into a cost value ac-
cording to its assumed resistance to the movement of
target species. The literature contains many examples of
cost evaluation methods (Knaapen et al. 1992; Ray et al.
2002; Chardon et al. 2003; Nikolakaki 2004; Kautz et al.
2006; Driezen et al. 2007; Gonzales and Gergel 2007;
LaRue and Nielsen 2008; Spear et al. 2010; Stevenson-
Holt et al. 2014; Ziółkowska et al. 2014). However, there
are potential problems associated with them. Those in-
clude subjectivity in the choice of parameters (Beier et
al. 2008; Rayfield et al. 2010; Spear et al. 2010; Zeller et
al. 2012; Ligmann-Zielinska and Jankowski 2014) and
sensitivity to their changes (Schadt et al. 2002; Larkin et
al. 2004; Driezen et al. 2007; Gonzales and Gergel 2007;
Rayfield et al. 2010; Murekatete and Shirabe 2018).
Nevertheless, if a cost surface is available that simulates
the mobility of target species accurately, GIS will enable
one to find a least-cost path between any two locations
and use its cost-weighted length, which may be called
“least-cost distance” (Etherington 2016), as the effective
distance between the two locations (Ferreras 2001;
Adriaensen et al. 2003; Chardon et al. 2003; Verbeylen
et al. 2003; Broquet et al. 2006; Royle et al. 2013; Ziółk-
owska et al. 2014).
Effective distance is scale dependent, as is the case

with other natural phenomena on the Earth’s surface
(Wiens 1989, Wu et al. 2002, Liu et al. 2007, Cushman
and Landguth 2010 for examples in ecology; Deng et al.
2007, Smith et al. 2019 for examples in geomorphology;
Ghaffari 2011, Goulden et al. 2014, Buakhao and
Kangrang 2016, Thomas et al. 2007 for examples of
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hydrology). It is generally known that the cost-weighted
length of a least-cost path (Rae et al. 2007; Etherington
2016) as well as its geometric length (Broquet et al.
2006) are affected by the spatial resolution of the input
cost surface partly because some landscape elements are
too small to be detected at low (or coarse) resolutions.
This, however, does not always justify the acquisition of
expensive high-resolution data for the analysis of land-
scape connectivity, since the most appropriate scale of a
relevant ecological process is not necessarily attained by
the highest possible resolution of a grid (see Wiens
(1989) for a general discussion and Rae et al. (2007) and
Cushman and Landguth (2010) for examples). Even if so,
effective distances measured at lower resolutions may
suffice if they are similar to or good predictors of those
measured at higher resolutions.
To see this, imagine two extreme types of cost sur-

faces, uniform and random, instances of which are here
created by assigning each cell of a 1-m-resolution grid a
value of 1 and an integer chosen from 1 to 10 with an
equal probability, respectively. Suppose that each of
these cost surfaces is resampled to resolutions of 3, 9,
and 27 m with majority filters of dimensions of 3 × 3, 9
× 9, and 27 × 27, respectively. In this procedure, a filter
was placed at each cell on the original cost surface, and
the most frequent value within the filter was assigned to
that cell, while ties were randomly broken. As a result,
we have four uniform and four random cost surfaces
with four different resolutions. Let us place two points
at the centers of the top-left and bottom-right cells of
the coarsest cost surface (i.e., one with a cell size of 27
m), designate them as a source and sink, and find a
least-cost path between them on each of the original and
resampled cost surfaces. On all four uniform cost sur-
faces, a straight line segment is the least-cost path be-
tween the source and sink. On the other hand, different
least-cost paths connect the source and sink on the four
random cost surfaces (see Fig. 1), and interestingly, their
cost-weighted lengths are found to increase more or less
linearly with their cell sizes. Is this just a coincidence?
Certainly, real landscapes are not completely uniform or
random. Yet, we suspect that there may exist some rela-
tionships between effective distances measured with dif-
ferent spatial resolutions and that these relationships
may be strengthened or weakened depending on how
the cost values are distributed and/or disturbed.
A major hypothesis of this study is that the effective

distance between two locations measured on a lower-
resolution cost surface can be a useful predictor of the
corresponding distance measured on a higher-resolution
cost surface. We expect that this hypothesis holds at
least when the spatial distribution of cost values does
not contain abrupt discontinuities. We have yet to know
if any general characteristics of the underlying

distribution of cost values affect the relationships be-
tween effective distances of different resolutions, al-
though some of them (e.g., range and grain) may well
affect the locations and lengths of individual least-cost
paths (see, e.g., Larkin et al. 2004; Schadt et al. 2002;
Driezen et al. 2007; Gonzales and Gergel 2007; Mureka-
tete and Shirabe 2018). To answer these, we designed
computational experiments with both synthetic and real
landscape data, in which we measured effective distances
on cost surfaces derived from these data with varied cell
sizes and examined how they differ.

Methods
We conducted two experiments. In the first experiment,
we used computer-generated random landscapes of a
variety of spatial configurations. This allowed us to ob-
tain a large sample of independent cost surfaces and ob-
serve the statistical behavior of effective distance
measures in response to the change of spatial resolution.
In the second experiment, we used a single instance of
real-world geographic data to test the relevance of find-
ings of the first experiment to an actual landscape. For
both experiments, we coded algorithms for creation of
cost surfaces and search for least-cost paths in the Java
programming language and ran them on a 2.80 GHz
Intel Core i7-7600 U CPU processor with 32.8 GB of
RAM. In addition, we used the ArcGIS 10.6 software,
ENVI image processing 5.3 software, and NLMpy PY-
THON 1.0.0 software module for data preparation and
presentation.

Data
Experiment 1
We first used the NLMpy PYTHON software package
(Etherington et al. 2015) to generate a large number of
neutral landscape models, which are, as originally intro-
duced by Gardner et al. (1987), computer-generated
landscapes encoded in raster format. In particular, with
the NLMpy adaptation of the mid-point displacement
method (Fournier et al. 1982), we generated 1000 729 ×
729 grids of cells with values ranging from 0 to 1 and
having various levels of autocorrelation (Anselin 1995)
controlled by a parameter, h, to which random decimal
numbers between 0 and 1 were assigned. For ease of
presentation and discussion, we assumed that the reso-
lution of all the grids was 1 m.
Then, we converted each of the 1000 neutral landscape

models generated in the previous step into a cost surface
by reclassifying its decimal numbers to a set of integers
defined by four parameters, dist_type, #_of_classes, min_
value, and max_value, whose values were also randomly
set. dist_type specifies one of the four types of frequency
distribution of cost values including uniform, symmetric,
left skewed, and right skewed. #_of_classes specifies the
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number of unique cost values, i.e., the number of land
cover types, whose range was set to 3 to 20. min_value
and max_value respectively specify the minimum and
maximum cost values such that 1 ≤ min_value ≤ max_
value ≤ 100.
Next, to each of the 1000 cost surfaces generated in the

previous step, we added one linear barrier after another and
created two additional cost surfaces: one with one barrier
and the other with two barriers. A barrier was generated by
randomly selecting two cells, drawing a line segment be-
tween them, and creating a buffer around it with a distance
of 3 m on each side (i.e., the barrier width = 6 m). Note that,
in order to prevent creating disconnected areas (which could
result in too many unreachable cells), we enforced a rule that
no buffers would intersect the grid boundary.
Finally, we resampled each of the 3000 cost surfaces

(i.e., 1000 each with 0, 1, and 2 barriers) generated in
the previous step to resolutions of 3, 9, and 27 m by
using majority filters of dimensions of 3 × 3, 9 × 9, and

27 × 27, respectively. As the result, we obtained 12,000
cost surfaces, i.e., 12 cost surfaces from each of the 1000
neutral landscape models (see Fig. 2 for an example).
There were two notes concerning the assumption and

limitation of our experimental design. First, the barrier
width was set to 6 m so that the three resampling filters
would effectively simulate the gradual loss of linear bar-
riers to decreasing spatial resolution. In fact, at resolu-
tions of 1 m and 3 m, all barriers were thick enough to
correctly block passage (see Fig. 2e, f, i, and j), but at res-
olutions of 9 m and 27 m, some barriers were so thin as
to partially or completely disappear and allow false pene-
tration (see Fig. 2g, h, k, and l). Second, while the neutral
landscape models were, by design, generic, the following
assumptions were made to give them some ecological
context: (1) they were heterogeneous in terms of land
covers, some of which were natural (e.g., forest and
grassland) and others were manmade (e.g., settlements
and roads), (2) they were inhabited by a terrestrial target

(a) (b)

(c) (d)

Fig. 1 Least-cost paths (colored in green) between a source and sink on random cost surfaces with resolutions of a 1, b 3, c 9, and d 27. Note
that darker shades represent higher cost values
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species, whose mobility varied only with land cover
types, and (3) the added barriers were major roads that
were not supposed to be crossed by the target species.

Experiment 2
We selected an approximately 15 × 16 km rectangular
area of northern Rwanda that lies between two national
parks, the Volcanoes National Park (VNP), and Gishwati
Mukura National Park (GMNP), as the study area of the
second experiment. Both parks are home to various taxa

including primates (Grueter et al. 2013), birds (Vande
Weghe and Vande Weghe 2011), amphibians (van der
Hoek et al. 2019a), and plants (van der Hoek et al.
2019b). The remaining part of the study area is predom-
inantly occupied by human settlements and their sur-
rounding farms for subsistence and cash crops as it is
covered with fertile volcanic soil. These land uses have
been putting stress on the otherwise “prime area for bio-
diversity conservation and tourism” (Akinyemi 2017;
Kanyamibwa 2013).

No barriers One barrier Two barriers
(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

1 m

3 m

9 m

27 m

Fig. 2 Twelve cost surfaces with different resolutions and different numbers of linear barriers (colored in red) derived from a common neutral
landscape model. Note that darker shades represent higher cost values. Note also that (parts of) some linear barriers have disappeared at
lower resolutions
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As target species, we continued to use the hypothetical
terrestrially moving animals. For this particular study
area, they might be exemplified by golden monkeys (Cer-
copithecus mitis kandti), which are half-meter-long pri-
mates that feed on bamboo, leaves, and fruits and are
found in different types of vegetation, mostly forest and
bamboo (Twinomugisha and Chapman 2008). As listed
as an endangered subspecies (of the blue monkey) on
the IUCN Red List, their population and range are de-
clining due to habitat degradation, loss, and fragmenta-
tion as a result of human activities (Butynski and de
Jong 2020).
To estimate the cost of movement for the target spe-

cies over the study area, we acquired two satellite images
from the data catalogue of Google Earth Engine and
used their visible (i.e., red, green, and blue) and near-
infrared bands to detect land cover types of the study
area. They were a PlanetScope image (Planet 2016) with
a resolution of 3 m (captured on August 15, 2019) and a
Sentinel-2 MultiSpectral Instrument image (European
Space Agency 2015) with a resolution of 10 m (captured
between June and September 2019). In addition, we used
a digital elevation model (DEM) with a resolution of 30
m created by the Shuttle Radar Topography Mission
(Farr et al. 2007) to help identify some vegetation types
known to have topographic preferences. All the data
were georeferenced to the Universal Transverse Merca-
tor projection on the World Geodetic System 1984.
Using the ENVI image analysis software, we applied to
the two images a pixel-based land cover classification
tool, which was an implementation of a non-parametric
machine-learning algorithm called Support Vector Ma-
chine (Vapnik 1995) and generated two raster land cover
layers (see Fig. 3).
To each land cover type, we assigned a value from 1 to

50 representing the cost per unit distance for moving
through that land cover type (Table 1), except that water
bodies (which were very few and small) were considered
impermeable. This was based on an assumption that the
target species would not swim, would move most easily
in the forests, and take more efforts to move over other
types of land cover. Accordingly, the 3-m and 10-m land
cover layers were converted into two cost surfaces of the
respective resolutions, which are referred to as COST3
and COST10, respectively.
Notice that some human settlements were expected to

serve as linear barriers as they were given the highest
cost value (50) and densely clustered along major roads,
which were assumed to be as costly as human settle-
ments. The linear barriers induced by human settle-
ments and major roads actually had many gaps in them
and allowed unlikely passage. This was because major
roads were not detected from the satellite images mainly
because many of them were mixed up with cropland and

bare land surrounding human settlements. To plug these
gaps, we used the ArcGIS software to identify all cells
intersected by vector line data representing a road net-
work (which was initially digitized from a 1:5000 topo-
graphic map of 1988 and updated by Rwanda Land
Management and Use Authority based on 25-cm-
resolution aerial photographs captured in 2008) and as-
sign them the highest cost value (50). The use of this
high but finite cost value did not make the linear bar-
riers completely impermeable but still difficult to cross,
which seemed to be a realistic assumption for many ter-
restrial animals such as golden monkeys. The resulting
two cost surfaces (with resolutions of 3 m and 10 m)
reflected the location of major roads, and are referred to
as COST3_V and COST10_V, respectively.

Effective distance measurement
Experiment 1
For each of the 1000 sets of 12 cost surfaces, we ran-
domly selected two locations that coincided with the
centers of cells at all four resolutions as a source and
sink, with conditions that they would not be inside linear
barriers. Then, we applied the shortest path algorithm of
Dijkstra (1959) to each cost surface to generate a least-
cost path between the source and sink (see Fig. 4 for ex-
amples), and measured its cost-weighted length (CWL)
as the effective distance between them. In this experi-
ment, effective distances measured on a cost surface
with a resolution of 1, 3, 9, and 27 m were referred to as
CWL1, CWL3, CWL9, and CWL27, respectively. As a
result, we obtained a sample of 1000 sets of CWL1,
CWL3, CWL9, and CWL27 values for each case of no
barriers, one barrier, and two barriers.
Although four of the 12 cost surfaces derived from

each neutral landscape model were supposed to be rep-
licas of each other but of different resolutions (Fig. 2),
their associated least-cost paths (Fig. 4) were generated
independently of each other. This does not mean, how-
ever, that their cost-weighted lengths—representing the
effective distance between their common source and
sink—were as different (or similar) as their forms might
suggest, because of the heterogeneity in the underlying
distribution of cost values. Also, it is important to note
that computationally optimal paths (especially those that
went around barriers) would not necessarily be taken (or
even recognized) by actual animals, verification of which
was beyond the scope of the present experiment.
Then, for each of the 1000 sets of CWL1, CWL3,

CWL9, and CWL27 values in each case with no barriers,
one barrier, and two barriers, we calculated the ratio of
the effective distance measured on each of the lower-
resolution cost surfaces (i.e., CWL3, CWL9, or CWL27)
to that on the highest-resolution cost surface (i.e.,
CWL1), which is referred to herein as the ‘accuracy
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indicator’ of the former against the latter. It takes a value
greater than 1 if the former distance overestimates the
latter distance (which is assumed to be more accurate),
smaller than 1 if the former distance underestimates the
latter distance, and equal to 1 otherwise. We analyzed
the sampling distributions of those accuracy indicators
and also performed a simple linear regression analysis of
each accuracy indicator against each of the five parame-
ters characterizing cost surfaces, h, dist_type, #_of_clas-
ses, min_value, and max_value (see the subsection
Experiment 1 of the Data section), as well as straight-
line source-to-sink distance.

Experiment 2
Assuming that the natural forest patch occupying the
northeast of the study area served as a source of disper-
sion of the hypothetical species, we applied Dijkstra’s al-
gorithm to the COST3 and COST10 surfaces to
generate two layers representing effective distances from
the source patch, which were referred to as CWL3 and
CWL10, respectively. Since, unlike in Experiment 1, the
two cost distance surfaces did not align each other (i.e.,
did not share grid lines or cell centers), we sampled
points from the study area at an equal interval of 150 m,
which totaled 9203 points after excluding those within

Fig. 3 Land cover layers with resolutions of a 3 m and b 10 m. Note that the water bodies were too small to be seen
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the source patch and water bodies. At each of those
sample points, we recorded a pair of CWL3 and CWL10
values and calculated the accuracy indicator CWL10/
CWL3. Note that we could have sampled more points at
finer intervals (but not finer than the resolution of the
CWL10) but we considered that the sample size of 9203
was large enough to capture the variation of accuracy in-
dicator in this study area.
Similarly, from the COST3_V, and COST10_V sur-

faces, we generated two layers of effective distances from
the source patch. They were referred to as CWL3_V and
CWL10_V, respectively. Then, we recorded a pair of
CWL3_V and CWL10_V at each of the 9203 sample
points and analyzed the resulting sampling distribution
of CWL10_V /CWL3_V.

Results
Experiment 1
The frequency distribution of 1000 sample values of
CWL3/CWL1, CWL9/CWL1, and CWL27/CWL1 on
cost surfaces with no barriers, one barrier, and two
barriers are presented in Fig. 5, and their summary sta-
tistics are reported in Table 2.
When there were no barriers, the sampling distribu-

tion of CWL3/CWL1 was overall clustered around 1
with a high peak and little deviation but slightly skewed
to the right. CWL9/CWL1 and CWL27/CWL1 had simi-
lar sampling distributions to that of CWL3/CWL1 but
with a little longer right tails. The mean of CWL3/
CWL1 was slightly smaller than that of CWL9/CWL1,
which was, in turn, slightly smaller than that of CWL27/
CWL1. Their differences were found statistically signifi-
cant by two t tests, one for the difference between the
means of CWL3/CWL1 and CWL9/CWL1 (p value <
0.001) and the other for the difference between the
means of CWL9/CWL1 and CWL27/CWL1 (p value <
0.001).
When there was one barrier, CWL3/CWL1 had an

almost identical distribution to that with no barriers. On
the other hand, CWL9/CWL1 extended its distribution

to the left, and so did CWL27/CWL1 with an even
greater extent (notice in particular the increased # (<
0.9) values in Table 2). Two t tests showed that the
mean of CWL3/CWL1 remained significantly larger than
that of CWL9/CWL1 (p value < 0.001), but there was no
significant difference between the means of CWL9/
CWL1 and CWL27/CWL1 (p value = 0.258).
When there were two barriers, all three accuracy indi-

cators generally behaved similarly to those with one bar-
rier, but CWL9/CWL1 and CWL27/CWL1 extended
their distributions even further to the left. Two t tests
showed that the mean of CWL3/CWL1 was still signifi-
cantly larger than that of CWL9/CWL1 (p value <
0.001), and there was no significant difference between
the means of CWL9/CWL1 and CWL27/CWL1 (p value
= 0.824).
The results of the simple linear regression of each of

CWL3/CWL1, CWL9/CWL1, and CWL27/CWL1
against the six parameters, h, dist_type, #_of_classes,
min_value, and max_value and straight-line source-to-
sink distance showed that the three accuracy indicators
had weak linear relationships with h and min_value but
not with the other parameters (Table 3).
A visual inspection of the regression lines of the three

accuracy indicators against straight-line source-to-sink
found that when there were barriers, CWL9/CWL1 and
CWL27/CWL1 tended to vary more for shorter straight-
line source-to-sink distances (see Fig. 6 for the case of
two barriers), but no such tendency was seen in CWL3/
CWL1 (which was overall tightly clustered). To verify
this, we divided the sample for each accuracy indicator
into two subsamples with varying cutoff distances (50,
100, 200, 300, and 400 m) and performed an F test for
the difference between their variances. It showed that
there was a distance (somewhere around 200 to 300 m)
beyond which the accuracy indicator dropped signifi-
cantly (see Table 4 for the case of two barriers).

Experiment 2
While their two sampling distributions were similar in
shape (Fig. 7), CWL10_V/CWL3_V had a slightly greater
mean than CWL10/CWL3 (Table 5), which was found
statistically significant by a t test for the difference be-
tween them (p value < 0.001). In fact, CWL10_V/
CWL3_V was greater than CWL10/CWL3 at all but 103
sample points. These imply that CWL10_V underesti-
mated CWL3_V to a smaller degree than CWL10 under-
estimated CWL3.
Many of the accuracy indicator values deviating from

their respective means were found to cluster in a short
range of straight-line distances from the source (Fig. 8).
The large variation caused by them, however, sharply di-
minished as moving further away from the source. This
was well visualized by the spatial distributions of the

Table 1 Land cover types and their cost values

Land cover types Cost values COST3 (%) COST10 (%)

Forest 1 21.9 24.0

Grassland 3 3.5 2.9

Cropland 5 70.9 68.9

Bare land 10 1.1 0.5

Settlements 50 2.7 3.7

Water bodies N/A 0.003 0.005

Note that the values of COST3 and COST10 at each row represent how much
of the study area was occupied by the corresponding land cover type on the
3-m and 10-m land cover layers, respectively
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sample values of CWL10/CWL3 and CWL10_V/CWL3_
V over the study area (Fig. 9).
As for CWL10/CWL3, both a very high range of

values and very low range of values were only found
near the source patch—roughly within a distance of
1500 m from it. Also, there were two southward-
elongated clusters of relatively high and low values in
the east of the study area. The rest of the study area was
largely homogenous. In fact, if the study area was

divided into two areas, one within 1500 m from the
source patch (containing 822 sample points) and the
other beyond 1500 m from the source patch (containing
8381 sample points), their means (0.862 and 0.867, re-
spectively) were almost identical, but their standard de-
viations (0.982 and 0.063, respectively) were very
different. An F test for the difference between the corre-
sponding variances found that the difference was statisti-
cally significant (p value < 0.001).

Fig. 4 Least-cost paths (colored in green) on the 12 cost surfaces with different resolutions and different numbers of linear barriers (colored in
red) derived from a common neutral landscape model shown in Fig. 3
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The spatial distribution of CWL10_V/CWL3_V was
generally similar to that of CWL10/CWL3. In fact,
CWL10_V/CWL3_V took the same value as CWL10/
CWL3 at all but 48 sample points within a distance of
1500 m of the source patch, because those points could
be reached before needing to cross—thus without being
affected by—linear barriers. Elsewhere, CWL10_V/
CWL3_V was generally slightly higher than CWL10/
CWL3, which explains that while the elongated cluster
of relatively low values in the west had shrunk, the elon-
gated cluster of relatively high values in the west were
more pronounced.

Discussion
The major finding of this study was that effective dis-
tances measured on lower-resolution cost surfaces are
generally highly related to those measured on higher-
resolution cost surfaces. However, whether the former
can serve as a useful predictor of the latter depends on
other conditions. Detailed discussions are as follows.

Overestimation and underestimation
Assuming that higher resolution data enable more ac-
curate effective distance measurement, we have demon-
strated that a decrease in spatial resolution generally has

two opposite effects: overestimation and underestima-
tion of effective distances. In Experiment 1, the compari-
son of the sampling distributions of the three accuracy
indicators CWL3/CWL1, CWL9/CWL1, CWL27/CWL1
(Fig. 5 and Table 2) suggests that effective distances tend
to be longer on lower-resolution cost surfaces if the
underlying distribution of cost values is positively
spatially autocorrelated (thus smoothly varying) across
the study area. We interpret this as a computational
artifact as follows. Given a source and destination, a
higher-resolution cost surface allows more alternative
paths to connect them than a lower-resolution cost sur-
face does because it contains a greater number of cells.
This difference in number of alternative paths makes the
least-cost path on the lower-resolution cost surface tend
to have a greater cost-weighted length than that on the
higher-resolution cost surface. This effect is most pro-
nounced when the underlying distribution of cost values
is random, exhibiting a salt-and-pepper pattern (as was
the case with the four least-cost paths in Fig. 1). On the
contrary, no overestimation should occur on completely
homogeneous cost surfaces. Autocorrelated surfaces sat
between these two extreme spatial patterns, being closer
to the latter, which explains the relatively small overesti-
mation observed in Experiment 1.
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Fig. 5 Frequency distributions of 1000 sample values of CWL3/CWL1, CWL9/CWL1, and CWL27/CWL1 on cost surfaces with a–c no barriers, d–f
one barrier, and g–i two barriers
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The effect of overestimation is expected to remain
even if there are patches of high cost values, which make
the spatial distribution of cost values discontinuous at
their boundaries. This is implied by the results of the re-
gression analysis of Experiment 1 in which we varied the
level of patchiness using the #_of_classes parameter but
did not find it to affect any of the accuracy indicators
(Table 3). We give a computational account of this as
follows. When patches are sufficiently wide to survive
reduction of spatial resolution or short to be easily
dodged, least-cost paths on cost surfaces of different res-
olutions tend to take similar turns or different but small
turns in going around high-cost patches.

The effect of underestimation comes in and dominates
the effect of overestimation, however, if the cost surface
contains linear barriers incurred by long and narrow (ra-
ther than short and wide) high-cost or impermeable fea-
tures such as rivers and roads. From Experiment 1, we
have learned that when there are linear barriers, effective
distances tend to be shorter on lower-resolution cost
surfaces and that this tendency becomes stronger as the
number of linear barriers increases. This agrees with a
result of the sensitivity analysis by Rae et al. (2007),
which found “the dependence of the least-cost inter-
patch distance calculations on the presence or absence
of costly linear barriers to movement”. Again, this is a

Table 3 R2 (above) and p value (below) for the linear regression of each of CWL3/CWL1, CWL9/CWL1, and CWL27/CWL1 against h,
dist_type, #_of_classes, min_value, max_value, and straight-line source-to-sink distance

Barrier Accuracy
indicator

h Symmetric
dist_type

Left-skewed
dist_type

Right-skewed
dist_type

#_of_
classes

min_
value

max_
value

Straight-line source-to-
sink distance

No
barriers

CWL3/CWL1 0.10775
< 0.001

0.00080
0.370

0.00140
0.237

0.00331
0.069

0.00570
0.017

0.12189
< 0.001

0.00336
0.067

0.00003
0.856

CWL9/CWL1 0.11505
< 0.001

0.00017
0.682

0.00555
0.018

0.00674
0.009

0.00252
0.112

0.12693
< 0.001

0.00568
0.017

0.00003
0.852

CWL27/CWL1 0.11166
< 0.001

0.00007
0.796

0.00605
0.014

0.00789
0.005

0.00358
0.059

0.13283
< 0.001

0.00436
0.037

0.00023
0.630

One
barrier

CWL3/CWL1 0.11606
< 0.001

0.00060
0.439

0.00248
0.116

0.00368
0.055

0.00435
0.037

0.12608
< 0.001

0.00525
0.022

0.00003
0.869

CWL9/CWL1 0.06294
< 0.001

0.00000
0.979

0.00722
0.007

0.01163
0.001

0.00000
0.950

0.03914
< 0.001

0.00427
0.039

0.00025
0.616

CWL27/CWL1 0.05866
< 0.001

0.00000
0.989

0.01082
0.001

0.01819
< 0.001

0.00192
0.167

0.05427
< 0.001

0.00272
0.099

0.00006
0.807

Two
barriers

CWL3/CWL1 0.09164
< 0.001

0.00019
0.663

0.00092
0.337

0.00094
0.334

0.00073
0.392

0.10157
< 0.001

0.00480
0.028

0.00000
0.990

CWL9/CWL1 0.05893
< 0.001

0.00007
0.791

0.00079
0.375

0.00055
0.457

0.00035
0.553

0.01136
0.001

0.00230
0.130

0.00202
0.156

CWL27/CWL1 0.04015
< 0.001

0.00000
0.991

0.00202
0.156

0.00311
0.078

0.00100
0.318

0.01877
< 0.001

0.00125
0.264

0.00054
0.462

Note that dist_type was represented by three dummy variables (symmetric, left skewed, and right skewed, each of which was used as a regressor. Note also that
max_value was dependent on #_of_classes and min_value, although not completely determined by them

Table 2 Summary statistics of 1000 sample values of CWL3/CWL1, CWL9/CWL1, and CWL27/CWL1 on cost surfaces with no barrier,
one barrier, and two barriers

Accuracy indicator Mean Median Std. Dev. Kurtosis Skewness Range # (< 0.9) # (> 1.1)

No
barriers

CWL3/CWL1 1.008 1.002 0.019 67.07 6.23 (0.916–1.285) 0 7

CWL9/CWL1 1.018 1.005 0.043 74.60 6.42 (0.916–1.710) 0 42

CWL27/CWL1 1.033 1.009 0.076 71.25 6.21 (0.913–2.237) 0 102

One barrier CWL3/CWL1 1.008 1.003 0.019 61.39 6.04 (0.916–1.285) 0 6

CWL9/CWL1 0.992 1.003 0.100 15.41 − 2.44 (0.229–1.710) 80 43

CWL27/CWL1 0.998 1.004 0.124 16.46 −0.18 (0.230–2.237) 100 90

Two barriers CWL3/CWL1 1.009 1.003 0.023 116.32 8.87 (0.916–1.384) 0 6

CWL9/CWL1 0.964 1.002 0.143 8.87 − 2.33 (0.163–1.710) 157 36

CWL27/CWL1 0.962 1.001 0.165 8.20 − 1.14 (0.163–2.237) 194 77

Note that “# (< 0.9)” and “# (> 1.1)” indicate the number of values smaller than 0.9 and greater than 1.1, respectively, and that this notation is used in the
remainder of this section.
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computational artifact, because lower-resolution cost
surfaces have higher chances of, completely or partially,
overlooking linear barriers, and the cost surfaces derived
from them have greater risks of allowing least-cost paths
false shortcuts. Such errors would be even more prob-
lematic when model outputs are to be utilized for deci-
sion making on actual operations or activities, for
example, acquisition of land or planting of trees to es-
tablish connectivity corridors or stepping stones.
It is important to note that in Experiment 1, we

resampled cost surfaces to create coarser cost surfaces
using a method that takes the most frequent value in
each sampling filter (as described in the subsection Ex-
periment 1 of the Data section) so that the original and
resampled cost surfaces had similar compositions of
cost values. This may not be the case with other resam-
pling methods as demonstrated in an experiment by
Liu et al. (2007). For example, if we had used a method
that takes the mean value in each sampling filter (useful

when cost values are to be derived from quantitative at-
tributes rather than categorical ones), the resampled
cost surfaces would have had narrower ranges of cost
values than the original, which, in turn, would have sys-
tematically caused least-cost paths to accumulate more
cost on the resampled cost surfaces. In our experiment,
we avoided such a bias by assuming that cost values
were mapped from categorical values and using the ma-
jority filter.

Variation
While we do not want effective distances measured on a
lower-resolution cost surface to inaccurately estimate ef-
fective distances measured on a higher-resolution cost
surface, we argue that whether overestimation or under-
estimation occurs, it may not necessarily be a problem if
its rate is constant across a study area. For example, the
absolute values of effective distances may not be mean-
ingful if cost is measured on a subjective, dimensionless

(a)

(b)

Fig. 6 Plots of 1000 sample values of a CWL9/CWL1 and b CWL27/CWL1 against straight-line source-to-sink distance in the case of two barriers
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scale of cost, which may be quantified according to ex-
pert opinions (e.g., Knaapen et al. 1992; Chardon et al.
2003; Gonzales and Gergel 2007; LaRue and Nielsen
2008; Spear et al. 2010) or take the form of an inverse of
“suitability” (e.g., Ferreras 2001; Wang et al. 2008; Chet-
kiewicz and Boyce 2009; Poor et al. 2012; Trainor et al.
2013; Reding et al. 2013; Ziółkowska et al. 2014) in
practice.
Results of Experiment 1 support the possibility of con-

stant rates of overestimation/underestimation under certain
conditions. The comparison of the sampling distributions
of CWL3/CWL1, CWL9/CWL1, and CWL27/CWL1 (Fig. 5
and Table 2) suggests that the variation of the accuracy in-
dicator tends to increase with the difference between the
resolutions of its associated cost surfaces and with the
number of linear barriers. Interestingly, however, even if
the variation of the accuracy indicator is high overall, high
variation tends to be concentrated near the source (Table 4).
We consider this as yet another computational artifact
since generally, when two locations are closer to each
other—i.e., in terms of number of cells (or more correctly,
with respect to the cell size as the unit of length), a least-
cost path between them comprises fewer cells and its cost-
weighted length is thus more affected by the error associ-
ated with a single cell. This error propagation mechanism
is similar to that of topographic characterization with a
raster DEM, in which a terrain attribute (e.g., slope and as-
pect) of each cell is derived by combining elevation values
within its immediate neighborhood (typically limited to
nine cells including itself) (see Zhang et al. 1999;
Deng et al. 2007, and Smith et al. 2019).

Application
In Experiment 2 with actual satellite imagery, the sam-
pling distribution of CWL10/CWL3 shows that effective
distances measured on the 10-m-resolution cost surface
underestimated effective distances measured on the 3-
m-resolution cost surface (Fig. 7 and Table 5). The com-
positions of cost values of the two cost surfaces were
similar except that the 10-m-resolution cost surface had
a larger percentage of cells with the highest cost value
than the 3-m-resolution cost surface (Table 1), which
should have had the effect of making effective distances
longer on the 10-m-resolution cost surface. Thus, a pos-
sible cause of the observed underestimation was the
presence of linear barriers—which was found in the clus-
ters of human settlements along major roads (Fig. 3)—
and of false gaps in them due to insufficient spatial reso-
lution. The comparison of the sampling distribution of
CWL10_V/CWL3_V with that of CWL10/CWL3 (Fig. 7
and Table 5) seems to support this, as the former was
generally greater than the latter, which implies that there
were more gaps in the linear barriers on the 10-m-
resolution layer than on the 3-m-resolution layer. We
acknowledge, however, that the statistical significance of
the difference between the means of CWL10/CWL3 and
CWL10_V/CWL3_V (p value < 0.001) might need to be
questioned, since the 9203 observations of any of CWL3,
CWL10, CWL3_V, and CWL10_V were not independ-
ent (because all the corresponding paths were derived
from the same cost surface).
It was also found that both CWL10/CWL3 and

CWL10_V/CWL3_V had fairly high variation. Their

Table 4 Variances of each of CWL3/CWL1, CWL9/CWL1, and CWL27/CWL1 for closer source-sink pairs and the remaining source-sink
pairs in the case of two barriers

Cutoff distance (m) Accuracy indicator Variance
(< cutoff distance)

Variance
(≥ cutoff distance)

p value

50 CWL3/CWL1 0.00061 0.00053 0.315

CWL9/CWL1 0.06114 0.02004 < 0.001

CWL27/CWL1 0.06153 0.02693 < 0.001

100 CWL3/CWL1 0.00034 0.00054 0.019

CWL9/CWL1 0.01958 0.02051 0.430

CWL27/CWL1 0.02710 0.02728 0.510

200 CWL3/CWL1 0.00064 0.00050 0.011

CWL9/CWL1 0.03516 0.01680 < 0.001

CWL27/CWL1 0.03912 0.02436 < 0.001

300 CWL3/CWL1 0.00080 0.00038 < 0.001

CWL9/CWL1 0.03167 0.01402 < 0.001

CWL27/CWL1 0.03809 0.02110 < 0.001

400 CWL3/CWL1 0.00079 0.00020 < 0.001

CWL9/CWL1 0.02721 0.01191 < 0.001

CWL27/CWL1 0.03543 0.01695 < 0.001
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standard deviations were both 0.300, which was much
greater than those observed in Experiment 1. This may
imply that effective distances measured on the 10-m-
resolution cost surface are not strong predictors of ef-
fective distances measured on the 3-m-resolution cost
surface. For both indicators, however, high variation was

seen only in the vicinity of the source patch, and quickly
diminished as they were moving away from it (Figs. 8
and 9). In fact, the standard deviations of CWL10/
CWL3 and of CWL10_V/CWL3_V beyond 1500 m
(equivalent to 150 cell sides on the 10-m-resolutin cost
surface) from the source patch were 0.063 and 0.064,

Fig. 7 Frequency distribution of 9203 sample values of a CWL10/CWL3 and b CWL10_V/CWL3_V

Table 5 Summary statistics of 9203 sample values of CWL10/CWL3 and CWL10_V/CWL3_V

Accuracy indicator Mean Median Std. Dev. Kurtosis Skewness Range

CWL10/CWL3 0.867 0.869 0.300 6752.66 76.42 (0.009–27.475)

CWL10_V/CWL3_V 0.893 0.895 0.300 6695.99 75.92 (0.009–27.475)
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respectively. So, if the study area had been as small as,
say, a 150 × 150 grid, we could not have expected
CWL10 to be a useful predictor of CWL3. An example
by Etherington (2016) can be considered as one such
case, where least-cost paths on a 21 × 21 cost surface
appeared to substantially deviate from those on its ori-
ginal, finer grid.
Lastly, we have seen that both the effects of underesti-

mation/overestimation and the variation of their indica-
tors were more dramatic in Experiment 2 than in
Experiment 1. This can be ascribed to the difference be-
tween synthetic data and real-world data. In Experiment
1, each of the lower-resolution cost surfaces was a result
of resampling of a higher-resolution cost surface, so that
the two cost surfaces certainly had different precision,
but their accuracy should not be considered different. In

Experiment 2, on the other hand, the lower-resolution
cost surface and higher-resolution cost surface were gen-
erated from different satellite images captured by differ-
ent devices at different times, so that their levels of
accuracy were not expected to be the same.

Conclusions
Application of Geographic Information Systems (GIS)
has become commonplace in ecological research. In the
context of landscape connectivity, their capability of
computing least-cost paths on a raster cost surface is
particularly useful for estimation of effective distances.
While GIS takes any cost surface encoded in raster for-
mat as input to this function, it is the user’s responsibil-
ity to ensure that it has an appropriate spatial
resolution—appropriate, i.e., in accordance with the

Fig. 8 Plot of 9203 sample values of a CWL10/CWL3 and b CWL10_V/CWL3_V against straight-line distance from the source patch. Note that the
portion of the plot (containing 14 values) where CWL10/CWL3 > 1.60 are not shown here for ease of illustration
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Fig. 9 Spatial distribution of 9203 sample values of a CWL10/CWL3 and b CWL10_V/CWL3_V
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grain of ecological process affecting the movement of
target species. Thus, it seems conservative yet reasonable
to attempt to obtain as high-resolution data as possible,
considering that an option is available to downsample
them. This is, however, not always the case in real-world
applications, because high-resolution data tend to have a
high price and high volume, and the availability of finan-
cial and computational resources is often limited.
Through computational experiments with neutral

landscape models and actual satellite images, we have
demonstrated that when certain conditions are met, ef-
fective distances measured on a cost surface with a
higher resolution are strongly related (or even substan-
tially similar) to those measured on a cost surface with a
lower resolution, and it is possible to estimate the
former from the latter. These conditions include the ab-
sence of linear barriers to dispersal, the availability of an-
cillary information (e.g., through vector line data) on the
location of linear barriers, if present, and large distance
(with respect to the cell size) between locations for
which effective distances are to be measured. Still, we
acknowledge that the results and findings of our experi-
ments may not be universal or even applicable to any
particular species because of the use of synthetic land-
scapes and/or a hypothetical species and the simplistic
assumption on their relationships.
A practical implication of the results of this study is

that if it is known in advance how much detail must be
considered in estimation of effective distances and land-
scape connectivity, it is still important to use data with a
spatial resolution high enough to capture the required
amount of detail. However, if their benefits are not ex-
pected to outweigh their costs substantially, the use of
lower-resolution data is worth considering as a cost-
effective alternative. Thus, considering that remote sens-
ing data are not the only means for detecting the loca-
tion of dispersal barriers, local geographic knowledge
and information remain critical in the application of GIS
to landscape connectivity analysis.
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