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dynamics in the highly urbanized river

networks in Shenzhen, South China

Zhenyuan Liu'?, Tingting Zhou'?, Yongde Cui', Zhengfei Li', Weimin Wang?, Yushun Chen'" and Zhicai Xie'"

Abstract

Background: Disentangling the relative roles of environmental filtering and spatial processes in structuring ecological
communities is a central topic in metacommunity ecology. Metacommunity ecology in the temperate river ecosystems
has been well developed, while less attention has been paid to subtropical urban river networks. Here, we examined
the ecological factors and seasonal difference in structuring macroinvertebrates metacommunity assembly in the
subtropical urban river networks in Shenzhen, South China.

Results: Our results revealed that there was no significant distinction of macroinvertebrate community composition
among seasons, with only the relative abundance of Mollusca and Odonata significantly differed in both wet and dry
seasons. One possible explanation was that most macroinvertebrates are generally pollution-tolerant taxa characterized
with nonseasonal life cycle. In addition, distance-based redundancy analysis and variation partitioning approach
revealed that metacommunity was determined equally by the environmental and dispersal-related factors. Further, our
results showed that, although a slight temporal variation of relative contribution, the identity and explanation power of
ecological factors were different among seasons. Specifically, stronger environmental filtering structuring community
dynamics was observed in the dry than wet seasons, which might be owing to higher environmental heterogeneity
under a low water-flow condition. Moreover, we detected that the influence of spatial processes was stronger in the
wet than dry seasons, indicating an obvious dispersal processes due to high connectivity among sites.
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Conclusion: Overall, our results revealed that environmental and spatial factors equally explained variations of
macroinvertebrate metacommunity, implying the necessity of considering dispersal-related processes structuring
ecological communities in river bioassessment programs. Moreover, degraded habitat conditions and water quality
were the predominant factors that affected macroinvertebrate communities, indicating the significance and feasibility
of improving local abiotic conditions to sustain local biodiversity. Further, our findings revealed the importance of
seasonal dynamics of these urban river networks in structuring macroinvertebrate metacommunity. Thereby, our study
improves the understanding of ecological processes governing macroinvertebrate metacommunity and underlines the
idea that community ecology studies should go beyond the single snapshot survey in river networks.

Keywords: Community assembly, Seasonal variation, Macroinvertebrate metacommunity, Environmental filtering,

Introduction

Disentangling the underlying processes driving spatial-
temporal variations of ecological communities is a major
topic in modern community ecology (Chase et al. 2020;
Chase and Myers 2011; Cottenie 2005). Two primary
processes have been proposed to explain the mecha-
nisms governing ecological communities (Chase 2003;
Tonkin et al. 2016). The niche-based deterministic pro-
cesses (e.g., environmental filtering and biological inter-
actions within and among species) assumes that species
coexistence is premised on the differentiation of eco-
logical niches (Keddy 1992). In this case, species sharing
similar functional traits should occupy similar environ-
ments (Carvalho et al. 2019). Besides, stochastic pro-
cesses assumes that there is no ecological differentiation
between species, and it is believed that spatial factors
(e.g., related to species dispersal) are important in struc-
turing community assembly (Chave 2004; Hubbell and
Borda-De-Agua 2004). Recently, metacommunity theory
provides a comprehensive framework that integrating
both environmental filtering and dispersal-related pro-
cesses explaining divergence among community com-
position across scales of space and time (Chase et al.
2020; Leibold et al. 2004). Theoretical and empirical re-
search suggest that both basic processes should be
jointly responsible for the variations in community com-
position, but the relative roles of these processes may
depend largely on ecosystem types (Logue et al. 2011),
seasonal dynamics (Chen et al. 2019; Csercsa et al. 2018;
Li et al. 2020), and focal biological groups (He et al
2020; Schmera et al. 2016; Wang et al. 2020).

Urban rivers possess many attributes that make them
ideal natural systems for studying the relative contribu-
tion of environmental filtering and dispersal processes
for aquatic organisms (Shu et al. 2020). As a highly
disturbed ecosystem, urban rivers exhibited strong environ-
mental gradients due to a series of anthropogenic stressors,
such as nutrient enrichment, elevated temperature, and al-
tered instream substrate composition (Allan 2004; Luo
et al. 2018; Wang et al. 2018). These strong environmental

gradients can serve as environmental filters to regulate
community structure and diversity (Castro et al. 2018),
which increased the strength of deterministic processes
governing aquatic metacommunity. Besides, river hydro-
logical alterations (e.g., altered macrosystem dynamics and
damming) would limit the processes of organism dispersal
via damming and humanities building (Raabe and High-
tower 2014; Wan et al. 2018). These disturbances could
cause rapid and difficult-to-reverse ecological changes that
impede the delivery of ecosystem services (Isabwe et al.
2018). However, the mechanisms underlying ecological
communities in highly urbanized city river networks remain
unclear (Bourassa et al. 2017; Gél et al. 2019).

Recent studies have frequently emphasized that mecha-
nisms governing community assembly in river systems
varied among seasons (Chen et al. 2019; Fernandes et al.
2013; Li et al. 2020). Ecosystems are dynamic, especially
for subtropical rivers, even on a relatively short time scale
(Datry et al. 2016). In this case, seasonality is a crucial
driver of environmental heterogeneity and connectivity
among habitats (Fernandes et al. 2014; Vanschoenwinkel
et al. 2010). For instance, in the wet season, high flow has
increased locations connection and is beneficial for
aquatic organisms expanding their ranges into adjacent lo-
cations (Sarremejane et al. 2017a). In this regard, spatial
signal of community would be expected to enhance due to
sufficient dispersal under high connectivity (Cottenie et al.
2003). Besides, snapshot surveys may misrepresent the
relative contribution of specific processes of community
assembly, because they assumed that the mechanism gov-
erning community variations is stable through time
(Csercsa et al. 2018; Li et al. 2020). Thus, teasing apart the
seasonal difference of these basic processes would provide
more detailed information for understanding the mecha-
nisms of community assembly.

To our knowledge, the community assembly mecha-
nisms were well developed in temperate river ecosystems
(Cilleros et al. 2017); however, for subtropical urban
river networks, this knowledge is still poorly understood
(Chen et al. 2019). Moreover, testing seasonal difference
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of these processes in subtropical river ecosystems are
still lacking (Chen et al. 2019; Isabwe et al. 2018; Li et al.
2020). In this study, we selected macroinvertebrtae, a
widely used ecological indicator in environmental moni-
toring and bioassessment programs (Rosenberg and Resh
1993), as the model organisms to understand the mecha-
nisms of community assembly and the seasonal shifts of
the involved mechanisms (Wang et al. 2020). Here, we
tested the following three predictions. First, macroinverte-
brate community assembly would be primarily determined
by environmental filtering under harsh conditions, be-
cause intensive anthropogenic stressors can constitute a
strict environmental filter to select particular organisms
(Chase 2007). Second, we predicted a higher biodiversity
and stronger environmental filtering structuring commu-
nity assembly in the dry than wet season because higher
habitat heterogeneity in the dry season would provide
more niches for macroinvertebrtae (Sarremejane et al.
2017a). Third, we hypothesized that spatial processes gov-
erning community assembly was stronger in the wet than
dry seasons due to a stronger dispersal effect induced by
higher connectivity (Fernandes et al. 2013).

Methods

Study area and sampling sites

The present study was conducted in Shenzhen (113°
43'-114° 38" E, 22° 24'-22° 52" N), a coastal megacity
located in the Southeast part of China. This city area
comprises approximately 1997 km? and with 13 million
inhabitants in 2019 (Shenzhen Statistical Yearbook
2019). Shenzhen is characterized by a subtropical mon-
soon climate, with an average annual temperature of 24
°C and an average annual precipitation of 1882 mm. The
precipitation of Shenzhen has a great seasonal fluctua-
tions, with 96.3% of rain fall concentrated during the
wet season (April to September) (Shenzhen Climate Bul-
letin 2019). Specifically, due to the fact that main water-
sheds in Shenzhen are typical rain-source urban rivers,
river runoff and flow volumes are closely linked to pre-
cipitation (Liu et al. 2019).

Shenzhen has experienced enormous urbanization de-
velopment and has grown to be one of the flourishing
cities in the last four decades (Qian et al. 2020). Besides,
due to rapidly developing economy, intensive anthropo-
genic activities and insufficient wastewater treatment
plant, rivers in Shenzhen have suffered a series of environ-
mental pollution problems, such as ecosystem health de-
terioration (Ng et al. 2011), water quality degradation (Liu
et al. 2019), etc. However, macroinvertebrate community
patterns and the mechanisms underlying community as-
sembly in this region received far less attention.

In this study, a total of 62 sampling sites were sampled
in August (wet season) and December (dry season) in
2019 (Fig. 1). These sites were roughly evenly distributed
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in Maozhouhe River (MZHR: 12 sites), Guanlanhe River
(GLHR: 13 sites), Shenzhenhe River (SZHR: 13 sites),
Pingshanhe River (PSHR: 12 sites), and Dapenghe River
(DPHR: 12 sites).

Macroinvertebrate sampling and identification

At each sampling site, we refer to a multi-habitat sam-
pling technique in the field, with five replicates randomly
sampled along a 100-m-long stretch reach (Barbour
et al. 1999). The main habitats were selected, including
different substrate (i.e., cobble, pebble, gravel, and sand
and silt), riparian zone, and submerged macrophytes
(Luo et al. 2018). For each replicate, benthic materials
were collected using a D-frame kick (30 cm wide, 250
um mesh size) in 30 x 30 cm per sample unit (0.09 m?)
(Castro et al. 2020). Then, benthic materials were
washed in the field using a 500-um copper mesh sieve.
The five subsamples with 0.45 m” area for each sampling
site were handpicked carefully from benthic materials on
a porcelain plate and then were preserved with 75% al-
cohol. In the laboratory, macroinvertebrates were identi-
fied and counted under a stereomicroscope (Olympus;
usually for aquatic insects) or a microscope (Imager A2;
usually for Oligochaeta and certain Diptera insects).
Specimens were identified to possible lowest taxonomic
level (usually to genus), and Oligochaeta and Mollusca
were identified to the species level using relevant taxo-
nomic keys (Brinkhurst 1986; Epler 2001; Morse et al.
1994; Thorp and Covich 2001; Wiggins 1996; Zhou et al.
2003).

Local environmental variables

Prior to macroinvertebrate sampling, environmental
variables were measured at each sampling site. Water
depth (WD) and velocity (Vel) were averaged using a
calibrated stick and a LJD-10 flowmeter following a
zyg-zag pattern (right-mid-left) in each sampling site,
respectively. River width (RW) and turbidity (Tur) were
measured by a diastimeter and turbidity meter, respect-
ively. The composition of the substrate by visually esti-
mating the percentages of boulder (>256 mm), cobble
(64-256 mm), pebble (32-64 mm), gravel (2-32 mm),
sand and silt (<2 mm) at each sampling site using a 1
m” grid (Kondolf 1997). Furthermore, we calculated
substrate heterogeneity (Div_substrate) from the Simp-
son index considering the composition of the substrate
(Firmiano et al. 2020). Water temperature (WT), pH,
dissolved oxygen (DO), and conductivity (Cond) were
acquired in the field with a YSI Professional Plus Water
Quality Sonde. Besides, 1 L water sample was collected
using an acrylic water sampler and preserved in 4 °C
and then transported to laboratory within 12 h for fur-
ther analysis. In laboratory, total nitrogen (TN), total
phosphorus (TP), ammonium nitrogen (NH,"-N),
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Fig. 1 The study area and sampled watersheds in Shenzhen, South China
.

chemical demand oxygen (CODc,), permanganate
index (PI), and biochemical oxygen demand over 5 days
(BODs) were measured according to standard methods
(EPBC 2002).

Spatial factors analysis

To model the spatial relations of community structure
among sampling sites at multiple scales, the principal
coordinates of neighbor matrices (PCNM) approach was
used to provide spatial factors based on overland dis-
tances among sampling sites for further analysis (Li et al.
2019). This approach is widely used for modeling spatial
structures in biological communities (Legendre and Le-
gendre 2012). We only retained those associated with
significant Moran's / and positive eigenvalues because
they represent a potential positive autocorrelation be-
tween spatial points at different scales (Dray and Legen-
dre 2008). The first larger spatial eigenvalues indicate
broad-scale spatial relations between locations and last
spatial vectors show smaller scale variation among sites
(Borcard et al. 2004; Borcard and Legendre 2002). Even-
tually, we obtained 25 spatial factors with positive eigen-
values for constrained ordination models. The spatial
factors were obtained using the function pcnm in the R
package vegan (Legendre et al. 2013).

Data analysis

Prior to statistical analysis, local environmental variables
(except for pH), and biodiversity indices were trans-
formed by log (x + 1) or square root (i.e., proportional
data: substrate composition data and the relative abundance
of dominant groups) to improve normality. We used
Mann-Whitney U tests to detect difference of local envir-
onmental variables, the relative abundance of dominant
groups, and biodiversity indices across wet and dry seasons.
Then, the environmental heterogeneity for each sampling
period was examined using the permutational analysis of
multivariate dispersions (PERMDISP) (Legendre and Le-
gendre 2012) based on Euclidean distance considering all
the standardized environmental variables. Higher average
distance indicates the higher environmental heterogeneity
(Anderson 2006). Besides, we ran nonmetric multidimen-
sional scaling (NMDS) using the Bray-Curtis similarity
distance based on abundance data to distinguish differences
in community structures among seasons (Legendre and
Legendre 2012). SIMPER analysis was used to identify spe-
cies that contributed most to community dissimilarity
among seasons (Clarke 1993). Besides, one-way analysis of
similarities (ANOSIM) with 999 permutations was
employed to examine whether taxonomic composition of
macroinvertebrate significantly differed among five water-
sheds (Clarke 1993).
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To elucidate the relative roles of local environmental
variables and spatial factors structuring macroinvertebrate
community, we employed distance-based redundancy ana-
lysis (db-RDA) (Legendre and Anderson 1999) and associ-
ated variation partitioning procedures (Legendre and
Legendre 2012). Distance-based redundancy analysis (db-
RDA) was used to examine the relationships between
macroinvertebrate community structure and local envir-
onmental variables and spatial factors, respectively. Prior
to db-RDA analysis, all environmental variables were
scaled to zero mean and unit variance to allow compari-
sons. Then, we removed highly correlated environmental
variables (Spearman r > 0.75) to reduce multicollinearity
in the R package Hmisc (Harrell 2016). Both environmen-
tal and spatial factors were screened by a forward selection
procedure in the R package adespatial to identify a set of
significant factors, respectively (Dray et al. 2017). Then we
conducted variation partitioning analysis (Legendre and
Legendre 2012) to obtain the pure environmental vari-
ables, pure spatial factors, their shared fractions, and un-
explained fractions with the varpart function in the R
package Vegan (Oksanen et al. 2017). Additionally, we ex-
amined the above fractions by means of the Monte Carlo
test with 999 permutations at a significance level of a =
0.05 (Oksanen et al. 2017).
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Mann-Whitney U tests analysis was conducted on
SPSS version 25.0. The biodiversity index calculation,
NMDS analysis, SIMPER analysis, and one-way analysis
of similarities (one-way ANOSIM) analysis were con-
ducted using the software PRIMER 6.0 and PERM
ANOVA+. Other statistical analysis were performed on
R version 3.6.2 (R Developement Core Team 2018).

Results

Environmental condition

In general, except for water temperature (WT), pH,
turbidity, river width (RW), ammonium nitrogen
(NH4*-N), and total phosphorus (TP), half of the 20
environmental variables were not significantly differed
between wet and dry seasons (Table 1). Among them,
certain environmental variables related to habitat con-
ditions, such as substrate composition, substrate het-
erogeneity index, and water depth (WD) were not
differed among wet and dry seasons. Specially, wet
season had higher water temperature (WT), turbidity,
river width (RW), chemical demand oxygen (CODc,),
permanganate index (PI), biochemical oxygen demand
over 5 days (BODs), ammonium nitrogen (NH,"-N),
while higher values of dissolved oxygen (DO), pH,
total nitrogen (TN), conductivity, and velocity were

Table 1 Environmental variables across the 62 sampling sites in the wet and dry seasons. **P < 0.01 or *P < 0.05 indicate the
significant difference among seasons based on Mann-Whitney U tests

Wet season Dry season F P
Min-Max Mean Min-Max Mean
Water temperature (°C) WT ** 14.10-34.00 2857 + 358 14.30-26.8 2150 + 267 126.27 0.000
pH pH ** 6.76-8.76 730 £0.33 2.71-9.13 772 £0.77 8.01 0.005
Dissolved oxygen (mg/L) DO 0.13-9.90 535+£225 1.54-941 5.84 £+ 2.06 219 0.142
Conductivity (s/cm) Cond 27.50-1628.00 34999 + 29536 27.00-6250.00 54522 £ 101027 148 0226
Turbidity (NTU) Tur ** 1.14-271.00 38.03 £51.30 0.56-81.90 962 £ 12.54 3748 0.000
River width (m) RW ** 3.00-22000  40.15+4626  060-101.00  21.01 + 19.81 9.14  0.003
Water depth (m) WD 0.02-5.00 0.73 + 1.06 0.05-3.50 047 +0.69 297 0088
Velocity (m/S) Vel 0.01-0.81 024 +£0.18 0.01-0.90 0.25 £ 0.20 017 0.681
Div_substrate Div_substrate  0.00-0.73 023 £ 026 0.00-0.73 022 £ 027 004 0852
Percentage of boulder %Boulder 0.00-100.00  9.68 + 23.73 0.00-100.00  9.92 + 2497 000 0952
Percentage of cobble %Cobble 0.00-90.00 11.77 £ 25.16 0.00-90.00 10.08 = 21.93 0.05 0.825
Percentage of pebble %Pebble 0.00-85.00 887 £ 17.16 0.00-90.00 9.52 £17.94 0.01 0.935
Percentage of gravel %Gravel 0.00-95.00 944 + 1836 0.00-95.00 8.26 + 1825 0.39 0.531
Percentage of sand and silt %Sand and silt 0.00-10000 5992 + 4456  0.00-10000  62.18 £ 43.82 012 0736
Permanganate index (mg/L) Pl 0.90-12.30 3.04 £ 2.09 0.50-5.10 256 + 1.14 1.85 0.176
Chemical oxygen demand (mg/L) COD¢, 6.00-69.80 1381+ 1432 500-25.00 1058 £ 4.99 065 0422
Biochemical oxygen demand over 5 days (mg/L) BODs 0.50-27.30 279 £ 475 0.50-5.90 213+£1.26 003 0859
Ammonium nitrogen (mg/L) NH4*-N * 0.03-17.90 214 + 393 0.03-4.10 0.79 £ 083 542 0.022
Total phosphorus (mg/L) TP * 0.00-1.72 027 £ 041 0.01-0.39 0.15 £ 0.11 405  0.046
Total nitrogen (mg/L) N 0.13-18.32 499 + 482 0.05-18.22 583 £ 5.04 087 0.353
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detected in the dry season. PERMDISP analysis re-
vealed that there was no significant difference in the
variance of the environmental heterogeneity among
seasons (F = 0.627; P > 0.05). However, in terms for
the variation of the environmental heterogeneity, the
dry season (average Euclidean distance: 6.92) was
more variable than the wet season (average Euclidean
distance: 6.57).

Macroinvertebrate community composition

A total of 21,714 individuals comprising 158 taxa were
collected, belonging to 4 phyla, 8 classes, 20 orders, 74
families, and 141 genera in the entire sampling period.
Aquatic insects accounted for 75.32% (119 taxa),
followed by Oligochaeta (19 taxa, 12.03%), Mollusca (19
taxa, 12.03%), and Nematoda (1 taxon, 0.63%). Species
with higher occurrence frequency were Limnodrilus sp.,
Limnodrilus hoffmeisteri, Polypedilum sp., Physa acuta,
and Biomphalaria straminea.

In general, 112 and 132 taxa were sampled in the wet
and dry seasons, respectively. The top three dominant
species in the dry season were Limnodrilus sp. (relative
abundance: 8.63%), Limnodrilus hoffmeisteri (6.98%), and
Limnodrilus claparedeianus (6.21%), while Chironomus
sp. (5.69%), Polypedilum sp. (5.69%), and Limnodrilus sp.
(5.45%) were dominated in the wet season. NMDS ana-
lysis showed that there was no significant distinction of
macroinvertebrate community composition among sea-
sons (Fig. 2). Only the relative abundance of Mollusca
and Odonata were significantly differed among seasons
(Supplement Table 1). SIMPER analysis showed that
Limnodrilus sp. and Limnodrilus hoffmeisteri were
among the most present taxa in both seasons. Other
characteristic taxa were Limnodrilus claparedeianus,
Branchiura sowerbyi, and Chironomus kiiensis for the

2D Stress: 0.18

Season
A » Wet
v Dry

Fig. 2 Non-metric multidimensional scaling (NMDS) of
macroinvertebrate community among wet and dry seasons in
Shenzhen, South China
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wet season, while Biomphalaria straminea, Chironomus
sp., and Polypedilum sp. for the dry season (Table 2).

Spatially, differences in macroinvertebrate composition
were evident among the five watersheds (Supplement
Figure 1). One-way ANOSIM analysis indicated that all
pairwise comparisons of community differed signifi-
cantly among five watersheds (Global R: 0.117-0.608, P
< 0.05), except for GLHR and SZHR (Global R = 0.005,
P > 0.05), PSHR and DPHR (Global R = 0.042, P > 0.05),
MZHR and GLHR (Global R = 0.044, P > 0.05). More
specifically, in PSHR and DPHR, aquatic insects (Exclu-
sion of Chironomidae) accounted for 50.81%, 53.14% of
the total abundance in the wet and dry seasons, respect-
ively. In MZHR, GLHR, and SZHR, Oligochaeta and
Chironomidae constituted 0-100% of the total abun-
dance with an average value of 71.48% and 71.36% in the
wet and dry seasons, respectively.

Richness, Simpson index and Shannon-Wiener index
differed significantly among seasons, with higher values
in the dry season (Fig. 3). In contrast, Evenness did not
significantly differ among seasons.

Key environmental and spatial factors affecting
community structure
Forward selection procedure showed that water temperature
(WT), water depth (WD), pH, %sand and silt, and total
nitrogen (TN) were significantly associated with the macro-
invertebrate communities in the wet season, while water
depth (WD), chemical demand oxygen (CODc,), dissolved
oxygen (DO), total phosphorus (TP), and permanganate
index (PI) proved to be important in shaping macroinverte-
brate communities in the dry season (Table 3; Fig. 4).
Spatial factors analysis based on forward selection pro-
cedure showed that PCNM1, PCNM2, PCNM4, and
PCNM5 were retained in the wet season, whereas
PCNM1, PCNM5, PCNM2, PCNMS8, PCNM4, and
PCNM28 were retained in the dry season (Table 3; Fig.
4).

Table 2 Results of top 5 ranked SIMPER species in both wet
and dry seasons

Taxa Wet season Dry season
Contribution rate (%)

Limnodrilus sp. 25.75 13.25

Limnodrilus hoffmeisteri 17.30 11.05

Limnodrilus claparedeianus 13.79

Branchiura sowerbyi 5.82

Biomphalaria straminea 6.56

Chironomus sp. 14.61

Chironomus kiiensis 791

Polypedilum sp. 12.78
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Fig. 3 Richness, Simpson index, Shannon-Wiener index, and Evenness of macroinvertebrate community among wet and dry seasons, respectively.
**P < 0,01 indicates the significant difference among seasons based on Mann-Whitney U tests

Relative roles of environmental and spatial factors

Variation partitioning procedure revealed that the pure
environmental variables, spatial factors, and their shared
effects jointly explained 49% and 42% of the community
variation in the wet and dry seasons (Fig. 5), respectively.
The relative roles of environmental and spatial factors var-
ied slightly among seasons. Specifically, spatial factors ex-
plained more of the variations (10%; Monte Carlo
permutations test: P < 0.01) compared to environmental
variables (8%; P < 0.05) in the wet season. Conversely, en-
vironmental variables accounted for 9% (P < 0.01) of the

community variations than spatial factors (8%; P < 0.01) in
the dry season. However, the shared fractions (i.e., ex-
plained jointly by both environmental variables and spatial
factors) accounted for most of the variations, with 31% (P
< 0.01) and 25% (P < 0.01) of the community variations
explained in both wet and dry seasons, respectively.

Discussion

Our results provide the first detailed description of mac-
roinvertebrate community composition and seasonal dy-
namics in the Shenzhen river networks. There were no

Table 3 Results of forward selection procedure in the db-RDA analysis in both wet and dry seasons

Variable Adj R? Pseudo-F P Variable Adj R? Pseudo-F P
Wet season Environmental Dry season Environmental
™ 0.115 8.939 0.001 Pl 0.119 9218 0.001
9%Sand and silt 0.150 3440 0.001 WD 0.136 2208 0.010
WD 0172 2.569 0.001 DO 0.150 1.932 0.016
pH 0.182 1.712 0.041 COD¢, 0.160 1.708 0.035
WT 0.191 1674 0.039 TP 0.171 1772 0.024
Spatial Spatial
PCNM1 0.100 7.760 0.001 PCNM1 0.069 5510 0.001
PCNM2 0.137 3.561 0.001 PCNM5 0.105 3453 0.001
PCNM4 0.169 3.295 0.001 PCNM2 0.126 2412 0.004
PCNM5 0.198 3.073 0.001 PCNM8 0.147 2409 0.005
PCNM4 0.164 2.197 0.006
PCNM28 0.179 1.958 0.013
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obvious differences of macroinvertebrate community
structure among seasons, which might be owing to rela-
tive abundance of tolerant taxa with nonseasonal life his-
tory. Further, a novel finding revealed that both
environmental filtering and spatial processes equally con-
tributed to the assembly of macroinvertebrate metacom-
munity. Importantly, our results showed that the identity
and explanatory power of environmental and spatial fac-
tors differed during the wet and dry seasons.

Mechanisms underlying macroinvertebrate community
assembly

Contradicted to the first prediction, our results detected
that macroinvertebrate metacommunity was determined
equally by environmental filtering and spatial processes.
These findings, however, do not fit well with previous
studies that deterministic processes dominated in mac-
roinvertebrate metacommunity assembly in other river
ecosystems (He et al. 2020; Li et al. 2020). One possible
explanation was that macroinvertebrate communities in
this basin are likely to comprise considerable abundance
of general tolerant taxa (e.g., Oligochaeta and Chirono-
midae larva), whose persistence is less sensitive to local
environmental conditions (Kim et al. 2008; Rosenberg
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and Resh 1993). Another explanation was that regional
habitat homogenization in urban ecosystems would po-
tentially weaken the correspondence of ecological com-
munities to local environments conditions (Bourassa et al.
2017). Besides, one that cannot be ignored was that
spatially structured environmental variables contributed
more variations for this metacommunity. However, the
shared effects of environmental and spatial factors are dif-
ficult to interpret. Generally, such shared effects are typ-
ical in studies of aquatic metacommunities (Heino et al.
2015; Vilmi et al. 2016). Although we did not identify a
dominance of environmental filtering shaping macroin-
vertebrtae metacommunity, our results revealed that cer-
tain local environmental variables related to nutrients
(e.g, TN, PI, CODc,) and physical habitat conditions
(e.g., WT and substrate composition) were important for
macroinvertebrate communities. These variables were ev-
idenced as the critical factors affecting the relative abun-
dance and occurrence frequency of macroinvertebrate
communities (Li et al. 2020; Wang et al. 2020).

Our results revealed that spatial factors also played im-
portant roles in explaining variations in macroinverte-
brate metacommunity, implying the necessity to consider
the dispersal-related processes in routine monitoring and
assessment programs. We infer that dispersal limitation
generated strong spatial signals in macroinvertebrtae
metacommunity. Possible elements contributing to the
results include the organism dispersal ability and dispersal
constrains (e.g., low-head dam and buildings) (Crook
et al. 2015; Csercsa et al. 2018). Spatial factors with large
eigenvalues (e.g, PCNM1 and PCNM2) were selected
based on a forward selection procedure, indicating
that broader scale spatial processes were important in
driving the macroinvertebrate metacommunity (Borcard
and Legendre 2002). Besides, the dominant species (e.g.,
Limnodrilus hoffmeisteri and Biomphalaria straminea) in
our study were small-bodied aquatic passive groups with
limited dispersal ability. Meanwhile, we should realize
that these effects would be expected to enhance under
the pressure of dispersal constrains. For instance, some
low-head dames located in channels would hinder the
route of aquatic passive organisms (Wan et al. 2018),
while intensive buildings and cultural facilities along the
channels would cause negative effects on terrestrial pas-
sive and active groups (Urban et al. 2006).

Although the relative importance of environmental and
spatial factors varied slightly among seasons, we indeed
observed that the identity and explanatory rate of both
factors differed between wet and dry seasons. Thus, our
results clearly support the prediction that there exist the
seasonal shifts of community assembly mechanisms in
the study region, and further stress the significance of ex-
ploring community assembly mechanisms from the tem-
poral perspective (Li et al. 2020). In terms of the slightly
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seasonal variation of community assembly, it might be re-
lated to a fact that nonsignificant changes in assemblage
composition displayed along homogeneous environmen-
tal conditions (PERMDISP analysis). One possible ex-
planation was that most macroinvertebrates in urban
river ecosystems are generally pollution-tolerant taxa
characterized with nonseasonal life cycle (Carlisle and
Hawkins 2008). Similarly, a previous relevant study has
showed that the seasonal changes in macroinvertebrate
communities in the urban river ecosystems were lower
than the least-disturbed rivers (Wang et al. 2018).

In line with the second prediction, we found higher
biodiversity embodied in the dry than wet seasons. This
could be related to higher heterogeneity in microhabitats
of macroinvertebrate communities during the period of
low water-flow currents and connectivity (Aiello-Lam-
mens et al. 2017; Chen et al. 2019). Our results also de-
tected that stronger environmental filtering structuring
community assembly in the dry than wet seasons, imply-
ing that deterministic processes dominated in driving
community dynamics during the low water-flow condi-
tions (Sarremejane et al. 2017b). This result was reason-
able because the strength of environmental filtering is
expected to be stronger with increasing environmental
harshness during the low water-flow currents period
(Boulton 2003; Sarremejane et al. 2017a). In our case,
several environmental variables (e.g., PI, DO, CODc,
and TP) significantly explained the variations in macro-
invertebrate communities, thus serve as environmental
filters that select for the most resistant/adapted taxa in
the regional species pool. Additionally, we found a
higher predictive power of spatial factors over metacom-
munity structures in the wet than dry seasons. A fast
recolonization after a flood event may potentially influ-
ence the relative contribution of dispersal-related pro-
cesses on biological communities (Datry et al. 2016).
Besides, connectivity among locations would be intensi-
fied when flushing water regimes occurred and can act
as an excellent proxy for aquatic organism dispersal
(Chaparro et al. 2018). Further, one point we cannot ig-
nore is that spatial signal could be enhanced under the
massive fly of fledged adult insects in such seasons.
However, we only focused on the larvae of macroinver-
tebrate in the present study, which may ignore the dis-
persal patterns of fledged adult insects and then limit
the representativeness of our results. Thus, different dis-
persal mode studies of aquatic larvae and adults must be
considered in future studies.

It should be noted that the variation partitioning ap-
proach employed in our study did not explain all the vari-
ations in macroinvertebrate metacommunity, indicating
that other community assembly mechanisms might be
working in the meantime. These other potential important
mechanisms may include species interactions,
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unmeasured environmental variables and historical
process (Chase 2003; Heino et al. 2015; Vellend et al.
2014). Although difficult to quantify the potential influ-
ences, these factors should also be responsible for varia-
tions in metacommunity structure. To better explore the
key mechanisms underlying macroinvertebrate metacom-
munity in subtropical river networks, more effective statis-
tical methodology and experimental consideration
through spatial-temporal scale need to be considered.

Implications for the watershed management and
biodiversity monitoring

Urban rivers support significant biodiversity and provide
essential ecosystem services (Volker and Kistemann
2011). However, urban rivers have suffered substantial
decline of aquatic biodiversity resulting from various an-
thropogenic stressors (Luo et al. 2018; Wang et al.
2018), but received relatively less attention (Higgins
et al. 2019). Thus, unraveling the key driving force
underlying community assembly is fundamental to accur-
ate bioassessment, river management and restoration
(Heino et al. 2015). Our results suggested that local envir-
onmental variables could mediate the macroinvertebrate
community by increased nutrients and degraded habitat
quality. Consequently, watershed management strategies
should focus on improving local abiotic conditions to sus-
tain local biodiversity (Luo et al. 2018; Wang et al. 2018).
Furthermore, understanding the community assembly
mechanisms should discriminate the signal of environ-
mental filtering from the spatial effects (Heino et al. 2015;
Li et al. 2020). If spatial processes are not considered, the
mechanisms underlying community assembly may over-
estimate the importance of environmental factors (Dale
et al. 2002). Our findings revealed that spatial factors and
environmental variables play similar roles in influencing
macroinvertebrate community. Thus, these findings high-
light that watershed management and monitoring should
emphasize simultaneously local environmental conditions
and dispersal processes to better predict the responses of
macroinvertebrate to human stressors. Specifically, given
that the mechanisms governing macroinvertebrate com-
munity assembly vary among seasons, researchers should
also emphasize the idea of long-term investigation at dif-
ferent seasons being necessary to enhance our under-
standing of their ecological dynamics.

Conclusion

In summary, our results demonstrated that both en-
vironmental and spatial factors equally dedicated to
macroinvertebrate metacommunity assembly, implying
that the necessity of considering the dispersal-related
processes structuring ecological communities in river
bioassessment and watershed management. Besides,
degraded habitat conditions and water quality (e.g.,
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TN, TP, pH, CODc,, and PI) were the predominant
factors that affected macroinvertebrate communities,
indicating the significance and feasibility of improving
local abiotic conditions to sustain local biodiversity.
Further, our findings revealed that the identity, ex-
planatory power, and relative importance of assembly
mechanisms varied among seasons. We thereby argue
that one-season snapshot survey is inadequate for
quantifying these ecological processes that influence
metacommunity dynamics.
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