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Abstract

Background: Rivers and streams are one of the primary sources of nitrous oxide (N2O) which is an important
greenhouse gas with great global warming potential. Yet, over the past century, human activities have dramatically
increased reactive nitrogen loadings into and consequently led to increased N2O emission from the river
ecosystems. Here, we carried out a study in two subtropical rivers, i.e., Jinshui River and Qi River with slight and
intense human disturbance in their respective catchments in China. The study intended to explore spatial variability
and seasonality in N2O emissions, and the relative importance of physicochemical variables, nitrification and
denitrification potentials, and functional genes abundance influencing N2O emissions.

Results: N2O concentration, N2O saturation, and N2O flux of Jinshui River peaked in high flow season. N2O
concentration, N2O saturations, and N2O flux in Qi River and downstream of Jinshui River were significantly higher
than that in other areas in normal and low flow seasons. N2O concentration was positively correlated with water
temperature, water NO3

−, and DOC, negatively correlated with water NH4
+ and DOC/NO3

− (the ratio of dissolved
organic carbon to NO3

− in water), and positively correlated with potential nitrification rate in high flow season, but
not correlated with functional genes abundance. Both rivers had lower N2O saturation and flux than many
freshwater systems, and their EFr-5 (N2O emission factor for river) was lower than the recommended values of IPCC.

Conclusions: While the two rivers were moderate sources of N2O and N2O emissions in river systems were
normally elevated in the summer, areas with intense human disturbance had higher N2O concentration, N2O
saturations, and N2O flux than those with slight human disturbance. Physicochemical variables were good
indicators of N2O emissions in the river ecosystems.
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Introduction
Rivers are one of the primary sources of nitrous oxide
(N2O) which is an important contributor to global cli-
mate change (Stocker et al. 2013; Hu et al. 2016; Marza-
dri et al. 2017). But in recent decades, increasing human
activities, such as land use change (e.g., deforestation,
urbanization, etc.) have released large quantities of pol-
lutants, leading to increasing nitrogen loadings which

affect nitrogen cycling in and increase N2O emission
from the river ecosystems (Kim et al. 2014; Hou et al.
2015; Liu et al. 2015; Chen et al. 2019; Zheng et al.
2019). The influence of N2O emissions in the river sys-
tem on the atmospheric N2O balance is becoming much
more important (Seitzinger and Kroeze 1998).
N2O is a byproduct of different microorganisms’ trans-

formations in the nitrogen cycling, including nitrifica-
tion, denitrification, and dissimilatory nitrate reduction
to ammonium (DNRA) (Cole and Caraco 2001). Nitrifi-
cation and denitrification appear to be the dominant
sources of N2O in most natural systems (Firestone and
Davidson 1989; Wang et al. 2009). The microorganisms
driving nitrification process contain AOA-amoA and
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AOB-amoA genes (Kowalchuk et al. 2000). nirS, nirK,
and nosZ are the key genes in the denitrification process
(Braker et al. 2000; Wyman et al. 2013). N2O emission
in the environment is generally associated with these
gene encoding enzymes and bacteria in the nitrogen cyc-
ling (Nie et al. 2015; Nie et al. 2016; Ma et al. 2017;
Cocco et al. 2018; Black et al. 2019). These genes are
often used to study the relationship between N2O emis-
sion and microorganisms (Cocco et al. 2018).
Aquatic N2O production is complex and sensitive to

environmental variables (Wang et al. 2009), which arises
from the complexity of the nitrogen cycling, the diffi-
culty of decoupling hydrologic and biogeochemical pro-
cesses, and increasing human disturbance in the river
ecosystems (Liu et al. 2015). Increasing human disturb-
ance, such as conversion of natural land use (e.g., forests
and wetlands) to human land use (e.g., cropland and
urban areas), releases large quantities of pollutants, in-
cluding nitrogen, and has widespread effects on bio-
diversity and ecological function of rivers (Müller et al.
1998; Liu et al. 2015). The increase of inorganic nitrogen
concentration can promote nitrification and denitrifica-
tion, leading to increase in N2O production (Weathers
1984; Herbert 1999; McMahon and Dennehy 1999;
Naqvi et al. 2000; Cole and Caraco 2001). Other envir-
onmental factors, such as temperature, DO, C/NO3

−,
can affect the nitrogen cycle processes and subsequently
N2O release (Kelso et al. 1997; Liikanen and Martikainen
2003; Baulch et al. 2012; Rosamond et al. 2012; Deng et
al. 2015; Quick et al. 2019). Land use could also indir-
ectly affect sediment denitrification and N2O emission in
headwater streams by influencing the river water quality
or sediment characteristics (Inwood et al. 2007). But the
relative contributions of different environmental factors
and biogeochemical processes to N2O emissions are
widely debated (Bollmann and Conrad 1998; Soued et al.
2015; Gardner et al. 2016; Voigt et al. 2017), and few
studies have addressed the indirect effects of catchment
human disturbance on river N2O emission. IPCC pro-
posed a method to estimate N2O emission flux from riv-
ers by using emission factor (EF5-r). The recommended
value of EF5-r was revised to 0.0025 in 2006 (IPCC
2006). However, due to the difference of N2O generation
mechanism in different geographical regions, the univer-
sal applicability of EF5-r is widely disputed (Wang et al.
2012).
Here, we investigated environmental factors, dissolved

N2O concentration, N2O saturation, N2O flux, and N2O
emission factor in different hydrological regimes (i.e.,
high, normal, and low flow seasons) in two subtropical
rivers with different human disturbance intensities in
their respective catchments in China. Our objects are to
(1) assess spatial variability and seasonality in dissolved
N2O concentration, N2O saturation, N2O flux, and N2O

emission factor and (2) assess relationships between
physicochemical factors, functional genes abundance, ni-
trification rates, denitrification rates, and N2O
concentration.

Materials and methods
Study area
Our study areas were located in Jinshui River and Qi
River in China (Fig. 1). Jinshui River is a mountainous
river, a secondary tributary of the Yangtze River and a
primary tributary of the Han River. The catchment area
of Jinshui River is 731 km2. Mean annual temperature is
11.8 °C. Annual precipitation ranges from 950 to 1200
mm (Zhang et al. 2010; Wang et al. 2015). Rainfall is
highly variable, with July to October being high flow sea-
son, November and April to June is normal flow season,
and December to March is low flow season (Wang et al.
2015). Elevation ranges from 363 to 2884 m in the catch-
ment (Fig. 1).
Qi River is a plain river, a tertiary tributary of the

Yangtze River and a secondary tributary of Han River.
The basin area of Qi River is 1501 km2. The average
annual temperature is about 15.1 °C, and the annual
precipitation ranges from 860 to 935 mm. June to Au-
gust is high flow season, March to May and Septem-
ber to November is normal flow season, and
December to February is low flow season (Xiong
2018). Elevation ranges from 161 to 2018 m in the
catchment (Fig. 1).
The highest temperatures occur in high flow season,

followed by normal and low flow seasons in the Jinshui
River and Qi River. For Jinshui River, the catchment can
be divided into three zones representing varying human
disturbance intensities (i.e., slightly, moderately and in-
tensively disturbed areas) from upstream to downstream
based upon population density, area of cropland, and
disturbance history (Zhang et al. 2010, 2013; Wang et al.
2015). Upstream of Jinshui River is in the Foping Na-
tional Nature Reserve of the Qinling Mountains, which
is mostly uninhabited with extensive forest cover (Zhang
et al. 2010, 2013). Cultivated lands and small towns are
primarily located along the downstream and midstream
of Jinshui River catchment. There are no industries in
Jinshui River catchment. However, there are cultivation
of edible fungi, fruit trees and traditional Chinese medi-
cine herbs, power stations, and pharmaceutical factories
in Qi River catchment (Zhao et al. 2020). In general, hu-
man disturbance in Qi River catchment has been more
intensive than that in Jinshui River catchment, and the
area of small towns and cultivated lands are larger in Qi
River catchment than those in Jinshui River (Table S1,
land use attribute table of Jinshui River and Qi River
catchments; Zhao et al. 2020).
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Field sampling
We sampled sediment, overlying water, and air samples
at nine locations from upstream to downstream in Jin-
shui River (Zhang et al. 2013; Wang et al. 2015) (Fig. 1).
Sites J1, J2, and J3 were located downstream, sites J4, J5,
and J6 were located midstream, and sites J7, J8, and J9
were located in the upstream. Similarly, we sampled
samples at nine locations from upstream to downstream
in Qi River (Fig. 1). Sites Q1, Q2, and Q3 were located
downstream, sites Q4, Q5, and Q6 were located mid-
stream, and sites Q7, Q8, and Q9 were located
upstream.
According to the hydrological regime, samples

were collected in high flow season (August 2018),
normal flow season (November 2018), and low flow
season (March 2019) in both rivers. We sampled
sediment using sterile sampling bags, and each sedi-
ment sample was mixed with three parallel samples.
Overlying water (0–10 cm) was collected with poly-
ethylene plastic bottles, filtered the samples through

filter membranes (0.45 μm), and stored them at 4 °C
for the determination of physicochemical factors, ni-
trification and denitrification rates. Overlying water
(0–10 cm) was collected with 60 mL serum bottle
(Thermo Fisher) for the determination of dissolved
N2O concentration, and to prevent microbial activity,
these samples were poisoned with 500 μL of a satu-
rated aqueous mercury chloride (HgCl2) solution.
The surface sediment samples (0–5 cm) were col-

lected with sterilized shovel and stored the sediment
in sterile TWIRL’EM® EPR-3050 sample bags (Labplas,
Quebec). Sediment samples for molecular analyses
were stored in liquid nitrogen immediately, and sam-
ples for nitrogen transformation rate and physico-
chemical factors detections were stored in 4 °C. We
sampled air samples with 12 mL gas-tight vials (Labco
Exetainers) for air N2O detections above 0.5 m the
water surface. Wind speed at 2 m above water surface
was measured by hand-held anemometer (Kestrel
2500, USA).

Fig. 1 Sampling sites of the Jinshui River and Qi River. The source of DEM is the free data from https://earthexplorer.usgs.gov/. The map was
made in ArcGIS 10.2
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Measurement of water and sediment physicochemical
variables
Water temperature was measured with a YSI Profes-
sional ProPlus probe in the field. NO3

− and NH4
+ con-

centrations of water (w-NO3
− and w-NH4

+) and
sediments (s-NO3

− and s-NH4
+) were measured with an

automatic continuous flow analyzer (AMS westco,
Smartchem 200, Italy) in the lab. NO3

− and NH4
+ con-

centrations of sediments were extracted from fresh soil
with KCl (2.0 mol/L) in the lab. Dissolved organic car-
bon (DOC) concentration of water and sediment organic
carbon (SOC) were measured with a TOC analyzer (Ele-
mentar, Vario TOC, Germany) in the lab.

Detection of dissolved N2O concentration, N2O saturation,
N2O flux, and N2O emission factor
Static headspace gas chromatography was used to deter-
mine dissolved N2O concentration in water samples
(Walter et al. 2005). During the water sample pretreat-
ment, a needle was inserted into the rubber stopper of
the serum bottle under the condition of sealing the
serum bottle in the lab. The 30mL of the water sample
was replaced with N2 (purity > 99.999%). After the sam-
ple bottle was placed on the shaker for 4 h at room
temperature to release the dissolved N2O from the
water, 5 ml of gas was extracted from the top of the
sample bottle with a syringe and injected into a vacuum
tube. The headspace N2O sample was determined by gas
chromatography (Agilent, 7890A, USA; column
temperature: 60 °C; chromatographic column: hayesp Q
80-mesh packed column, 8FT; pre-column flow: 21 ml/
min; separation column: constant pressure, 33.5 psi; de-
tector ECD: 300 °C; tail blowing 5 ml/min). Finally, the
dissolved N2O concentration in water was calculated ac-
cording to the headspace N2O concentration (Johnson
et al. 1990; Eq. 1).

CN2O ¼ Cg � βRTk

22:4
þ Vg

V1

� �
ð1Þ

where CN2O is the dissolved N2O concentration
(nmol/L), Cg is the headspace N2O concentration (nmol/
L), β is the Bunsen coefficient (Liu et al. 2011b), 22.4 is
the molar volume of N2O, R is the gas constant 0.082,
and Tk is in K. Vg is the volume of the gas phase, Vl is
the volume of the liquid phase.
The N2O saturation was the ratio of the dissolved

N2O concentration to the equilibrium N2O concentra-
tion (Ceq) (Eq. 2). The equilibrium N2O concentration
was calculated by Henry formula (Yang et al. 2013; Liu
et al. 2011b; Eq. 3).

N2Osaturation¼CN2
O

Ceq
�100%

ð2Þ

Ceq ¼ β� CA ð3Þ
where Ceq is the equilibrium concentration of N2O in

water at the given water temperature (nmol/L), and CA

is the atmospheric N2O concentration of the sampling
sites (nmol/L).
The flux of N2O was calculated as follows (Wannin-

khof 1992, 2014; Cole and Caraco 2001; Crusius and
Wanninkhof 2003; Eq. 4):

F ¼ k� ΔN2O ð4Þ
where Δ N2O is the N2O net increase and is the differ-

ence between the dissolved N2O concentration to the
equilibrium N2O concentration (Eq. 5). k denotes gas
exchange rate (Cole and Caraco 1998; Crusius and Wan-
ninkhof 2003; Eqs. 6 and 7).

ΔN2O ¼ CN2O - Ceq ð5Þ

k ¼ 2:07þ 0:215U10
1:7

� �� SC
600

� �‐23

for U10

< 3:7m=s ð6Þ

k ¼ 4:33U10 - 13:3ð Þ � SC
600

� � - 2
3

for U10

> 3:7m=s ð7Þ
where U10 denotes wind speed at 10 m above water

surface (m/s), and U10 was calculated by wind speed at
2 m above water surface (U2) (Yang et al. 2015; Eq. 8;
Table S2). Sc denotes viscosity coefficient of N2O (Wan-
ninkhof 2014; Eq. 9).

U2

U10
¼ lg200

lg1000
ð8Þ

SC ¼ 2141:2 - 152:56Tþ 5:8963T2 - 0:12411T3

þ 0:0010655T4 ð9Þ
where T denotes water temperature (°C).
N2O emission factor for river (EF5-r) is ratios of dis-

solved N2O-N (μg N/L) to NO3
−-N (μg N/L) (Eq. 10).

EF5‐r ¼ N2Ob c
NO3½ � � 100% ð10Þ

Statistical analysis
Linear mixed modeling was performed to examine
spatial variability and seasonality in dissolved N2O con-
centration in water, N2O saturation in water, N2O flux
and N2O emission factor using SPSS 20 (SPSS®, version
20; IBM®, Armonk, New York). Sampling sites were ran-
dom effects, and sampling seasons and rivers were fixed
effects. Linear mixed modeling was performed to exam-
ine the difference in N2O concentration, N2O saturation,
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N2O flux, and N2O emission factor among sampling
areas of each river using SPSS 20. Sampling sites were
random effects, and sampling areas were fixed effects.
A series of stepwise multiple regression analyses with

backward selection (P< 0.05) were then applied to iden-
tify the determinants of N2O concentration using SPSS
20 (the independent variables were water and sediment
physicochemical variables). Correlations between dis-
solved N2O concentration, nitrification genes abundance
(Fig. S1, AOA-amoA, AOB-amoA), denitrification genes
abundance (Fig. S2, nirK; Fig. S3, nirS; Fig. S4, nosZ), de-
nitrification rates (Fig. S5), and nitrification rates (Fig.
S6) were analyzed with the Pearson correlation analyses
using Origin 9.0.
The Structural Equation Modeling (SEM) was per-

formed to further elucidate the direct and indirect ef-
fects of key explanatory variables on N2O concentration.
First, a conceptual path model was developed according
to existing literature and basic ecological principles (Liu
et al. 2015; Feng et al. 2018). Second, promising explana-
tory variables were selected to include in path analysis
mainly based on the results of Pearson correlation
(Table S3) and stepwise multiple regression analyses.
The abundance of nitrification genes (AOB-amoA and
AOA-amoA) and three denitrification genes (nirK, nirS,
and nosZ) were found to be highly positively correlated
with each other (Table S4). Afterwards, a principal

component analysis (PCA) was conducted to reduce the
number of variables using SPSS 20.0 (SPSS, Chicago, IL,
USA). The principal component 1 (PC1) extracted from
two nitrification gene explained 54.71% of the total vari-
ance and was thus considered as the representative of
the overall variation in nitrification genes. The principal
component 1 (PC1) extracted from three denitrification
genes explained 70% of the total variance and was thus
considered as the representative of the overall variation
in denitrification genes (Feng et al. 2018). amoA and de-
nitrification genes were introduced as new variables into
the SEM. Third, path coefficients, R2, direct and indirect
effects, and model fit parameters were calculated by
AMOS 20.0. The low χ2 (chi-squared test), P value >
0.05, a comparative fit index (CFI) value > 0.95, Tucker-
Lewis index (TLI) value > 0.90, and root square error of
approximation (RMSEA) < 0.05 indicated that the final
path model had an acceptable fit with the data (Scher-
melleh-Engel et al. 2003; Fan et al. 2016). Statistical ana-
lyses were conducted at a 0.05 significant level.

Results
Physicochemical variables
For Jinshui River, water temperature, s-NO3

−, w-NH4
+,

s-NH4
+, DOC, and SOC in high flow season were higher

than those in other seasons (Tables 1 and 2). DOC/
NO3

− (the ratio of dissolved organic carbon to NO3
− in

Table 1 Water physicochemical variables of Jinshui River and Qi River

Sampling season River Sampling area Temp (°C) w-NO3
− (mg L− 1) w-NH4

+ (mg L− 1) DOC (mg L− 1) DOC/NO3
−

High flow season Jinshui River Downstream 28.72 ± 0.51a 0.94 ± 0.30 0.78 ± 0.19 7.67 ± 1.06b 9.10 ± 4.49

Midstream 25.23 ± 4.71a 1.03 ± 0.23 0.71 ± 0.11 8.63 ± 0.59a 10.45 ± 2.21

Upstream 16.04 ± 0.53b 1.15 ± 0.07 0.56 ± 0.03 10.61 ± 2.17a 11.32 ± 1.57

Qi River Downstream 32.07 ± 0.97a 1.44 ± 0.33 0.67 ± 0.19 7.12 ± 1.58 8.69 ± 2.55

Midstream 29.78 ± 1.05ab 1.09 ± 0.12 0.49 ± 0.05 7.45 ± 0.60 8.57 ± 1.18

Upstream 23.92 ± 5.58b 1.68 ± 0.52 0.67 ± 0.42 8.84 ± 0.76 7.66 ± 1.57

Normal flow season Jinshui River Downstream 8.73 ± 0.32a 1.23 ± 1.12 0.04 ± 0.00 7.49 ± 2.28a 10.08 ± 7.30

Midstream 7.58 ± 0.78b 0.60 ± 0.11 0.04 ± 0.01 5.02 ± 0.20ab 12.83 ± 1.91

Upstream 4.77 ± 0.42c 0.91 ± 0.08 0.04 ± 0.00 4.60 ± 0.48b 11.88 ± 0.54

Qi River Downstream 12.13 ± 1.37a 0.86 ± 0.38 0.04 ± 0.01 14.04 ± 4.34a 8.55 ± 16.95

Midstream 10.73 ± 0.50ab 1.28 ± 0.32 0.04 ± 0.01 9.84 ± 1.39ab 6.86 ± 2.77

Upstream 8.47 ± 1.99b 1.29 ± 0.72 0.04 ± 0.01 6.57 ± 0.55b 5.69 ± 2.38

Low flow season Jinshui River Downstream 10.43 ± 0.64a 0.50 ± 0.01c 0.38 ± 0.02 12.35 ± 0.54a 24.63 ± 0.84a

Midstream 7.66 ± 1.23b 0.59 ± 0.02b 0.32 ± 0.03 8.08 ± 0.62b 21.47 ± 1.61b

Upstream 4.34 ± 0.08c 0.91 ± 0.04a 0.47 ± 0.14 6.44 ± 0.07c 17.52 ± 0.29c

Qi River Downstream 9.87 ± 0.38 0.56 ± 0.26b 0.39 ± 0.09 26.28 ± 4.15a 13.76 ± 46.82

Midstream 9.79 ± 2.18 1.13 ± 0.18a 0.39 ± 0.02 20.81 ± 2.41ab 10.92 ± 1.51

Upstream 8.87 ± 1.88 0.84 ± 0.23a 0.42 ± 0.01 15.77 ± 1.17b 8.94 ± 5.35

Values are presented as mean ± SD (n = 3); different letters indicate significant differences among sampling areas by linear mixed modeling (P < 0.05).
Abbreviations: temperature is denoted by Temp, the NO3

− and NH4
+ concentration of water is denoted by w-NO3

− and w-NH4
+. The dissolved organic carbon

concentration of water is denoted by DOC. The ratio of dissolved organic carbon to NO3
− in water is denoted by DOC/NO3

−
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water) and SOC/NO3
− (the ratio of sediment organic

carbon to sediment NO3
−) in low flow season were

higher than those in other seasons (P < 0.05). There was
no significant seasonal difference in w-NO3

− (P > 0.05).
Temperature in downstream was the highest in all sea-
sons (P < 0.05). DOC in upstream was the highest in
high flow season (P < 0.05). DOC in downstream was
the highest in normal flow and low flow seasons (P <
0.05). w-NO3

− in downstream was the lowest in low flow
season (P < 0.05). s-NO3

− and SOC in midstream were
the lowest in high flow season (P < 0.05). And DOC/
NO3

− in downstream was the highest in low flow season
(P < 0.05).
For Qi River, water temperature, w-NO3

−, s-NO3
−,

w-NH4
+, s-NH4

+ and SOC in high flow season were
higher than those in other seasons (P < 0.05). DOC
and DOC/NO3

− in low flow season were higher than
those in other seasons (P < 0.05). There was no sig-
nificant seasonal difference in SOC/NO3

− (P > 0.05).
Temperature in downstream was highest in high and
normal flow seasons (P < 0.05). w-NO3

− in down-
stream was the lowest in low flow season (P < 0.05).
s-NO3

− in upstream was the lowest in high flow sea-
son (P < 0.05). DOC in downstream was the lowest in
normal and low flow seasons (P < 0.05). And SOC/
NO3

− in upstream was the lowest in low flow season
(P < 0.05).

Comparatively, water temperature in Qi River was
higher than that in Jinshui River in normal flow season
(P < 0.05). w-NO3

− concentration in Qi River was higher
than that in Jinshui River in high flow season (P < 0.05).
DOC in Qi River was higher than that in Jinshui River in
normal and low flow seasons (P < 0.05).

Dissolved N2O concentration
N2O concentrations in Qi River were higher, 1.51 and
1.37 times of that in Jinshui River in normal and low
flow seasons (Fig. 2, P < 0.01 and P < 0.05), respectively.
For Jinshui River, there was no significant seasonal dif-
ference in N2O concentration (P > 0.05). N2O concentra-
tion in normal flow season in downstream was higher (P
< 0.05), and 1.12 and 1.12 times of that in midstream
and upstream, respectively. There was no difference in
N2O concentration between sampling sites in high and
low flow seasons (P > 0.05). For Qi River, there was no
significant seasonal difference in N2O concentration (P
> 0.05). N2O concentration of normal flow season in
midstream was higher, 1.23 times of that in downstream
(P < 0.05).

N2O saturation
N2O saturation in Qi River was higher, 1.69 times of
that in Jinshui River in normal flow season (Fig. 3, P
< 0.01 and P < 0.05). For Jinshui River, N2O saturation

Table 2 Sediment physicochemical variables of Jinshui River and Qi River

Sampling season River Sampling area s-NO3
− (mg kg−1) s-NH4

+ (mg kg−1) SOC (g kg− 1) SOC/NO3
−

High flow season Jinshui River Downstream 6.04 ± 2.12a 5.74 ± 1.95 7.42 ± 1.87b 1.30 ± 0.39

Midstream 5.97 ± 4.47b 4.83 ± 0.98 3.14 ± 0.48c 2.09 ± 1.66

Upstream 6.70 ± 2.34a 5.99 ± 1.39 10.06 ± 0.80a 1.80 ± 0.49

Qi River Downstream 6.79 ± 0.42ab 6.17 ± 1.24b 5.55 ± 2.39 1.35 ± 0.39

Midstream 7.98 ± 0.74a 8.61 ± 1.05a 7.93 ± 6.14 0.65 ± 0.68

Upstream 5.33 ± 1.74b 5.52 ± 0.55b 4.38 ± 0.72 1.03 ± 0.49

Normal flow season Jinshui River Downstream 1.34 ± 0.09 0.80 ± 0.47 3.47 ± 2.05 2.62 ± 1.61

Midstream 0.82 ± 0.25 0.89 ± 0.55 5.74 ± 4.53 4.85 ± 4.71

Upstream 1.22 ± 0.07 0.60 ± 0.10 9.48 ± 3.88 5.09 ± 2.83

Qi River Downstream 0.98 ± 0.22 1.19 ± 0.46 2.58 ± 3.43 7.01 ± 3.11

Midstream 0.83 ± 0.32 1.13 ± 1.02 1.79 ± 1.13 5.32 ± 2.34

Upstream 1.06 ± 0.73 1.26 ± 0.79 5.50 ± 3.53 7.50 ± 6.14

Low flow season Jinshui River Downstream 0.60 ± 0.16 3.43 ± 0.97 2.64 ± 1.11 4.59 ± 2.29

Midstream 1.00 ± 0.07 2.19 ± 1.14 5.21 ± 3.46 3.32 ± 3.25

Upstream 1.03 ± 0.37 2.44 ± 1.92 2.72 ± 0.40 5.36 ± 0.75

Qi River Downstream 1.81 ± 1.43 2.89 ± 0.67 2.87 ± 1.75 5.16 ± 1.21a

Midstream 0.94 ± 0.25 2.10 ± 0.72 1.47 ± 0.64 5.06 ± 0.27a

Upstream 0.58 ± 0.32 1.73 ± 0.59 3.26 ± 1.00 2.74 ± 4.39b

Values are presented as mean ± SD (n = 3); different letters indicate significant differences among sampling areas by linear mixed modeling (P < 0.05).
Abbreviations: the NO3

− and NH4
+ concentration of sediment are denoted by s-NO3

− and s-NH4
+. Sediment organic carbon concentration is denoted by SOC. The

ratio of sediment organic carbon to NO3
− in sediment is denoted by SOC/NO3

−
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in high flow season was higher (P < 0.01), 1.61 and
1.45 times of that in normal and low flow seasons,
respectively. The N2O saturation in downstream was
the highest for all three seasons (P < 0.05). For Qi
River, there was no significant seasonal difference in
N2O saturation in Qi River (P > 0.05). N2O saturation

of normal flow season in midstream was higher, 1.24
times of that in upstream (P < 0.05).

N2O flux
N2O flux of Qi River was 13.28 and 4.79 times of that in
Jinshui River in normal and low flow seasons,

Fig. 2 N2O concentration in the Jinshui River and Qi River. Vertical bar denote SE of triplicate samples. Different letters indicate significant
differences among sampling areas by linear mixed modeling (P < 0.05)

Fig. 3 The saturation of N2O in the Jinshui River and Qi River. Vertical bar denote SE of triplicate samples. Different letters indicate significant
differences among sampling areas by linear mixed modeling (P < 0.05)

Zhao and Zhang Ecological Processes           (2021) 10:54 Page 7 of 14



respectively (Fig. 4, P < 0.01 and P < 0.05). For Jinshui
River, the N2O flux in high flow season was higher (P
< 0.01), 7.95 and 1.77 times of that in normal and
low flow seasons, respectively. N2O flux of down-
stream was higher than midstream and upstream in
normal and low flow seasons (P < 0.05). N2O flux in
few downstream sampling sites was less than zero.
For Qi River, there was no significant seasonal differ-
ence in N2O flux (P > 0.05). The N2O flux in up-
stream was higher, 1.63 times of that in downstream
in high flow season (P < 0.05).

N2O emission factor
N2O emission factor in Jinshui River varied from 0.042–
0.054%, 0.047–0.072%, and 0.047–0.089%, and in Qi
River varied from 0.034–0.049%, 0.057–0.083%, and
0.054–0.113% in high, normal, and low flow seasons, re-
spectively (Table 3). There was no significant difference
in N2O emission factor between the two rivers (P >
0.05). For Jinshui River, N2O emission factor in low flow
season was higher than that in high flow season (P <
0.05). N2O emission factor in upstream was lower than
that in downstream and midstream in low flow season
(P < 0.05). For Qi River, N2O emission factor in low flow
season was higher than that in high and normal flow
season (P < 0.05). There was no significant difference
among sampling sites in all seasons (P > 0.05).

Relationship between N2O concentration,
physicochemical variables, nitrification rate,
denitrification rate, and functional genes abundance
Stepwise multiple regression revealed that w-NO3

−,
DOC, w-NH4

+, and DOC/NO3
− explained a relatively

large portion of the variances in N2O concentration at
annual level for both rivers (Table 4, P < 0.05). w-NO3

−

explained a relatively large portion of the variances in
N2O concentration in high flow season (Table 4, P <
0.05). Water temperature explained a relatively large
portion of the variances in N2O concentration in normal
flow season (Table 4, P < 0.01). For Jinshui River, DOC/
NO3

− explained a relatively large portion of the vari-
ances in N2O concentration at annual level (Table 4, P
< 0.05). For Qi River, w-NH4

+ explained a relatively large
portion of the variances in N2O concentration at annual
level (Table 4, P < 0.05).
Pearson’s correlation analyses showed that there was

no significant correlation between functional genes
abundance and N2O concentration (Table S5, P > 0.05).
There was significantly positive correlation between
N2O concentration and nitrification rate in normal flow
season (Table S5, r = 0.52, P < 0.05).
SEM result (R2 = 0.431, P = 0.977, χ2 = 0.467, CFI =

1.00, TLI = 1.151, RMSEA = 0.000) showed water
temperature, w-NO3

−, w-NH4
+, DOC, and DOC/NO3

−

could affect N2O concentration both directly and indir-
ectly (Fig. 5, Table S6, P < 0.05).

Fig. 4 N2O flux in the Jinshui River and Qi River. Vertical bar denote SE of triplicate samples. Different letters indicate significant differences
among sampling areas by linear mixed modeling (P < 0.05)
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Discussion
Seasonal and spatial variabilities of N2O emission
N2O emission (N2O concentration, N2O saturation, and
N2O flux) showed significant seasonality in present
study. Similar to other studies (Hasegawa et al. 2000;
Harrison and Matson 2003; Garnier et al. 2009; Beaulieu
et al. 2010; Rosamond et al. 2012; Burgos et al. 2015),
N2O concentration, N2O saturation and flux of Jinshui
River were peak in high flow season (summer) (Figs. 2
and 4). The higher NO3

− and organic carbon in high
flow season were important factors and tended to en-
hance microbial processes including those producing
N2O, such as nitrification and denitrification (Starry et
al. 2005; Wang et al. 2018; Liu et al. 2019). Temperature
is the key driver of the temporal dynamics of N2O emis-
sion (Wang et al. 2018), and higher temperature in high
flow season affects the decomposition rate of organic
matter through its effect on microbial activity and con-
sequently regulates N2O production rate in the present
study (Wang et al. 2018). This finding confirms that
N2O emissions in subtropical river systems are normally

elevated in the summer (Musenze et al. 2014, 2015;
Allen et al. 2011).
Significant spatial differences in N2O emission were

also observed in present study, N2O concentration, N2O
saturation, and N2O flux were higher in areas with in-
tensive human disturbance (Figs. 2, 3, and 4). As previ-
ously noted, significant variability in water
physicochemical variables was observed in the sampling
areas, and these variables could be considered here as
possible factors influencing the spatial differences in
N2O emission. The effects of human disturbance on
river N2O emission were more likely driven through
changes of water physicochemical variables (Liu et al.
2015). Water characteristics were significantly affected
by human disturbance (Sponseller et al. 2001; Huang et
al. 2012). Disturbance gradient followed an elevational
gradient in the present study, and the elevational gradi-
ent also had driven higher temperatures in the lower-
elevation intensely disturbed areas. Higher temperature
enhanced the N2O production processes (Rosamond et
al. 2012; Burgos et al. 2015). The increase of agricultural

Table 3 N2O emission factor (EF5-r, dissolved N2O-N:NO3
−-N) of Jinshui River and Qi River

River Sampling area High flow season (%) Normal flow season (%) Low flow season (%)

Jinshui River Downstream 0.054 ± 0.013 0.062 ± 0.023 0.089 ± 0.007a

Midstream 0.049 ± 0.002 0.072 ± 0.008 0.076 ± 0.005a

Upstream 0.042 ± 0.001 0.047 ± 0.003 0.047 ± 0.004b

Qi River Downstream 0.039 ± 0.026 0.083 ± 0.026 0.113 ± 0.028

Midstream 0.046 ± 0.011 0.061 ± 0.011 0.054 ± 0.002

Upstream 0.034 ± 0.012 0.057 ± 0.012 0.075 ± 0.016%

Values are presented as mean ± SD (n = 3); different letters indicate significant differences among sampling areas by linear mixed modeling (P < 0.05)

Table 4 Results of stepwise multiple regression analyses to predict N2O concentration

Sampling season Independent variables Coefficient Adjusted R2 P value

Two Rivers Whole year w-NO3
− 0.28 0.08 0.04

DOC 0.73 0.21 0.00

w-NH4
+ − 0.28 0.27 0.02

DOC/NO3
− − 0.46 0.33 0.03

High flow season w-NO3
− 0.59 0.301 0.01

Normal flow season Temp 0.65 0.39 0.00

Low flow season - - - -

Jinshui River Whole year DOC/NO3
− − 0.53 0.25 0.01

High flow season - - - -

Normal flow season - - - -

Low flow season - - - -

Qi River Whole year w-NH4
+ − 0.44 0.16 0.02

High flow season - - - -

Normal flow season - - - -

Low flow season - - - -

Correlation coefficients with P values less than 0.05 were shown. “-” represent P > 0.05
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and urban land use could lead to the decline of river
water quality including increased reactive nitrogen and
degrading organics in the terrestrial biosphere (Sponsel-
ler et al. 2001; Huang et al. 2012; Kim et al. 2014; Hou
et al. 2015), leading to higher denitrification rate (Jung
et al. 2014; Harrison et al. 2011; Morse et al. 2012).
Therefore, the Qi River and downstream of Jinshui River
with higher water temperature, DOC and NO3

−, had
promoted the occurrence of nitrification and denitrifica-
tion which enhanced N2O concentration.

Influencing factors of dissolved N2O concentration
N2O concentration has been shown to be associated
with many physicochemical variables. Higher
temperature can increase microbial enzyme activity in
denitrification and nitrification processes (Chen et al.
2011; Zheng et al. 2016), which was demonstrated by the
positive correlation between N2O concentration and
water temperature in present study (Table 4). On the
other hand, expression and activity of key enzymes in
denitrification and nitrification processes are strongly
dependent on the carbon substrate (Philippot et al. 2013;
Sigleo 2019). Higher organic carbon content leads to
proliferation of heterotrophic bacteria, larges consump-
tion of dissolved oxygen (Wang et al. 2015), and the an-
aerobic environment is more suitable for denitrification
(Chapin et al. 2011; Hou et al. 2013; Ma et al. 2014).
Also, many nitrification microorganisms can use organic
carbon as carbon source (Hallam et al. 2006), and these

may explain the positive correlation between N2O con-
centration and DOC (Table 4).
Previous studies found that DOC/NO3

− was signifi-
cantly negatively correlated with nitrification (Schade et
al. 2016; Zhao et al. 2020) and reported higher sediment
denitrification rates under optimal DOC/NO3

− range
(0.35–3.5) (Hansen et al. 2016). DOC/NO3

− was beyond
this range in present study, and higher DOC/NO3

−

might have inhibited N2O production from denitrifica-
tion and nitrification. Denitrification is positively corre-
lated with NO3

− concentration (Jung et al. 2014; Liu et
al. 2019), so higher NO3

− concentration may promote
N2O production. In the present study, N2O concentra-
tion was positively correlated with w-NO3

− concentra-
tions (Table 4), but the relationship was not always
significant (Fig. 5; Reay et al. 2003). These results indi-
cated uncertainty of the correlation between NO3

− and
N2O emission, which suggests complexity of N2O pro-
duction in rivers (Liu et al. 2011a). Also, heterotrophic
microorganisms consume NH4

+ with rapid propagation,
providing an anaerobic environment for denitrification;
therefore, N2O concentration from denitrification might
increase as w-NH4

+ decreased (Liu et al. 2015).
The correlation between functional genes abundance

and N2O concentration was weak, but N2O concentra-
tion was positively correlated with potential nitrification
rate in high flow season (Table S5). Several studies have
shown that nitrification rate can be greater than denitri-
fication rate in rivers (Holmes et al. 1996; Webster et al.

Fig. 5 SEM estimating the direct and indirect effects of physicochemical variables and functional genes on N2O concentration. The amoA in this
figure is the principal component 1 (PC1) extracted from two nitrification genes. The denitrification genes in this figure are the PC1 extracted
from three denitrification genes. Direct effect: the direct influence of explanatory variables on N2O concentration, and the value is the path
coefficient from cause variable to result variable. Indirect effect: the influence of explanatory variables on N2O concentration through one or more
mediating variables. The value is the product of the path coefficients starting from the explanatory variables and ending at the N2O
concentration through all intermediary variables. Red solid lines demonstrate significantly positive effects (P< 0.05), blue solid lines demonstrate
significantly negative effects (P< 0.05), and black dashed lines indicate insignificant effects. Single-headed arrows refer to unidirectional
causal relationships
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2003; Arango and Tank 2008). Nitrification produces
twice as much N2O per unit N converted as compared
to denitrification (Mosier et al. 1998). Therefore, our re-
sults did not exclude the possibility of N2O production
through denitrification but identifies nitrification as the
major N2O source in sediments (Koike and Terauchi
1996; Bauza et al. 2002). Direct measurement of func-
tional genes abundance could not be an indicator of
their activities, and more research on substantial post-
transcriptional, protein assembly, and/or environmental
factors to determine what ultimately controls activity is
much needed (Ikeda et al. 2009; Liu et al. 2010; Smith et
al. 2015).
Overall, the influencing factors of N2O concentration

varied in different seasons and rivers in the present
study (Table 4; Harrison et al. 2005; Liu et al. 2015; Yang
and Lei 2018). There were more influencing factors at
the annual level than the monthly level, due to large
variation of physicochemical variables at the annual
level. Spatially, the dominant control factor was DOC/
NO3

− for Jinshui River, and the dominant control factor
for Qi River was NH4

+ (Table 4), implying difference in
controlling factors on river N2O concentration with dif-
ferent human activity intensities in the uplands.

N2O emission factor, N2O saturations, and N2O flux
IPCC recommended value of N2O emission factor for
river (EF5-r) was 0.0025 (IPCC 2006). Similar to other
studies (Clough et al. 2006; Yang et al. 2015), our mea-
sured EF5-r values ranged from 0.00034 to 0.00113 in
the present study (Table 3). According to the IPCC def-
inition, the amount of N2O released estimated by IPCC
release coefficient may be overestimated because dis-
solved N2O concentration in river includes part of N2O
dissolved in water to reach equilibrium, which is not a
source of atmospheric N2O (Wang et al. 2012). A
discrete measurement of EF5-r is extremely difficult, and
its values were different in different rivers (Table 3).
New measurement and estimation techniques are
needed to minimize errors of N2O flux by applying sin-
gle model (Clough et al. 2006).
Interestingly, seasonal difference of N2O saturation

and N2O flux was significant in Jinshui River (Figs. 3
and 4), but not in Qi River. Spatial variations of N2O
saturation and N2O flux of Qi River were inconsistent
(Figs. 3 and 4). This may be due to larger direct dis-
charge of sewage in Qi River, and N2O in the water body
far exceeds the amount of N2O formed in the process of
nitrogen migration and transformation, which makes the
seasonal difference of N2O emission smaller. Our study
showed N2O saturations and flux in Jinshui River and Qi
River were similar to most freshwater systems in China
(Yan et al. 2004; Zhao et al. 2009; Wang et al. 2012; Xu
et al. 2016) and lower than those in other countries

(García-Ruiz et al. 1999; McMahon and Dennehy 1999;
Dong et al. 2004; Rosamond et al. 2011). N2O satura-
tions of most samples in Jinshui River and Qi River were
greater than 100% (Fig. 3), which indicated that both riv-
ers were sources of atmospheric N2O (Yang et al. 2013).
Overall, the two rivers had high N2O fluxes in most of
their areas, and they were moderate sources of the at-
mospheric N2O.

Conclusions
We investigated N2O concentration, N2O saturation,
N2O flux, and N2O emission factor of two subtropical
rivers, China. Our results revealed that: (1) N2O concen-
tration, N2O saturation, and N2O flux of Jinshui River
peaked in high flow season, and areas with intensive hu-
man disturbance had higher N2O concentration, N2O
saturation, and N2O flux in normal and low flow sea-
sons. (2) Our present study rivers had lower N2O satur-
ation and flux than many freshwater systems, and they
were moderate sources of N2O. (3) Physicochemical var-
iables including temperature, NO3

−, NH4
+, DOC, SOC,

DOC/NO3
− and SOC/NO3

− were good indicators of
N2O emissions in the river ecosystems.
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