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Background: Soil microbial communities cope with an imbalanced supply of resources by adjusting their element
acquisition and utilization strategies. Although soil pH has long been considered an essential driver of microbial
growth and community composition, little is known about how soil acidification affects microbial acquisition and
utilization of carbon (C) and nitrogen (N). To close the knowledge gap, we simulated soil acidification and created a
pH gradient by adding eight levels of elemental sulfur (S) to the soil in a meadow steppe.

Results: We found that S-induced soil acidification strongly enhanced the ratio of fungi to bacteria (F:B) and
microbial biomass C to N (MBC:MBN) and subsequently decreased the C:N imbalance between microbial biomass
and their resources. The linear decrease in the CN imbalance with decreasing soil pH implied a conversion from N
limitation to C limitation. To cope with enhanced C versus N limitation, soil microbial communities regulated the
relative production of enzymes by increasing the ratio of 3-glucosidase (BG, C-acquiring enzyme) to leucine
aminopeptidase (LAP, N-acquiring enzyme), even though both enzymatic activities decreased with S addition.
Structural equation modeling (SEM) suggested that higher C limitation and C:N-acquiring enzyme stimulated
microbial carbon-use efficiency (CUE), which counteracted the negative effect of metal stress (i.e, aluminum and

Conclusions: Overall, these results highlight the importance of stoichiometric controls in microbial adaption to soil
acidification, which may help predict soil microbial responses to future acid deposition.
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Introduction

Ecological stoichiometry theory (EST) suggests that mi-
crobial growth and metabolism are limited by the scar-
cest elements when the stoichiometry of microbial
resources becomes mismatched from the optimal ratios
of microbial demands (Mooshammer et al. 2014a;
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Sterner and Elser 2002). Soil microbial communities, in
turn, could cope with an imbalanced supply of resources
by adjusting their element acquisition and utilization
strategies (Fig. 1) (Spohn 2016). For instance, microbes
secrete more C-acquiring enzymes in soils with narrow
C:N ratios after long-term N enrichment (Schleuss et al.
2019), while N-acquiring enzymatic activities are higher
in extremely barren ecosystems with wide soil C:N ratios
(Cui et al. 2018; Tapia-Torres et al. 2015). On the other
hand, microbes can adjust element utilization via
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Fig. 1 Conceptual diagram illustrating relative microbial element limitation and their adaptive strategies to imbalanced supply of resources
relative to requirements. Microbial communities tend to increase acquisition and use efficiency of the scarcest element to cope with imbalanced
element supply and requirements. The transition from nutrient limitation to energy (C) limitation corresponds to the threshold element ratio
(TER), which links EST and metabolic theory of ecology (MTE). It is important to emphasize that the TERc is not a constant, especially for non-
homeostatic communities, but is sub-linearly correlated with biomass C:N (Sinsabaugh et al. 2013)

regulating their physiological processes when facing re-
source imbalance (Spohn 2016). Net N immobilization
by microbes occurs when N is limited (Mooshammer
et al. 2014b), and excess C can be released to the atmos-
phere by increasing microbial respiration (Manzoni et al.
2010), corresponding to a low carbon-use efficiency
(CUE). Conversely, microbes mineralize and release con-
siderable N into the soil rather than retaining it in bio-
mass (i.e., lower nitrogen-use efficiency, NUE) when N
is sufficient in their substrates (Mooshammer et al.
2014b). The threshold elemental ratio (TER) was pro-
posed to reflect the critical ratios of substrate C:N (or
P), at which microbial growth and metabolism shifts
from elemental mineralization (i.e.,, C:N or C:P lower
than TER, C limitation) to immobilization (i.e., C:N or
C:P higher than TER, nutrient limitation; Fig. 1) (Frost
et al. 2006). Recent studies have linked microbial adap-
tion processes with changing element limitations in-
duced by climate change and anthropogenic disturbance
(Guo et al. 2020; Yuan et al. 2019).

Terrestrial ecosystems worldwide are facing a growing
risk of soil acidification (Lu et al. 2014; Schrijver et al.
2012; Yang et al. 2012) as a result of atmospheric nitro-
gen (N) and sulfur (S) deposition and inorganic fertilizer
application (Bowman et al. 2008; Cui et al. 2014). Soil
acidification has been shown to affect soil C and N

cycling, thereby changing ecosystem functions (Poschen-
rieder et al. 2008; Wang et al. 2006). Soil enzyme activ-
ities are sensitive to soil acidification (Kunito et al. 2016)
due to the increasing toxic effects of protons (H') and
aluminum ions (AI**) (Van Den Berg et al. 2005). Simi-
larly, increasing manganese (Mn>*) and exchangeable
AI** contents with decreasing pH (Feng et al. 2019)
would decrease soil CUE (Jones et al. 2019) because mi-
crobial resistance to toxic metals is energy-intensive
(Bellion et al. 2006). Furthermore, given that the bacter-
ial community is more sensitive to low pH and AI**
stress than fungi (Rousk et al. 2010a), a shift towards
fungal dominance is expected following soil acidification
(Chen et al. 2013; Meng et al. 2019). In addition to dir-
ect detrimental effects, soil acidification increased soil N
availability and decreased soil C:N ratios (i.e., increasing
N supply to microorganisms) (Meng et al. 2019; Xiao
et al. 2020), whereas the microbial biomass C:N ratio
(reflecting the relative status of microbial C and N de-
mands according to Zechmeister-Boltenstern et al. 2015)
would vary following the ratio of fungi to bacteria
(Strickland and Rousk 2010). We need to examine soil
acidification impacts on C and N cycling from a stoi-
chiometric standpoint, considering the potential varia-
tions in C:N ratios of both microbial biomass and
resources under soil acidification. However, how soil
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acidification affects microbial nutrient limitation and
further regulates microbial nutrient acquisition and
utilization is still an open question.

A variety of N addition experiments showed that stoi-
chiometric controls play a key role in alleviating micro-
bial C limitation by increasing C-acquiring enzymatic
activity and CUE under N addition (Spohn et al. 2016;
Yuan et al. 2019). However, concomitant changes in ni-
trogen availability and soil acidification could both con-
tribute to the observed C processes in N addition
studies, which is hard to disentangle (Yuan et al. 2019).
Moreover, higher soil N availability tends to decrease
soil fungi to bacteria (F:B) ratio due to bacterial prefer-
ence of N-rich environments, while soil acidification in-
creases it because of the higher proliferation of fungi
relative to bacteria (Rousk et al. 2010a; Strickland and
Rousk 2010). These conflicting responses of the F:B ratio
to soil availability versus acidification would further add
uncertainty to predicting microbial nutrient acquisition
and utilization under N addition (Averill and Waring
2018). Therefore, direct evidence is needed to estimate
whether stoichiometric adjustment processes help the
microbial community cope with the expected higher N
supply but lower N requirements under soil acidification
without exogenous N input.

Over the last two decades, temperate semi-arid grass-
land, one of China’s most important ecosystems, has ex-
perienced elevated soil acidification from atmospheric
acid deposition (Yang et al. 2012). Our objectives were
to investigate how S-induced soil acidification affects mi-
crobial nutrient limitation, acquisition, and utilization
strategies, as revealed by enzymatic stoichiometry and
element-use efficiency. We conducted an acidification
gradient experiment by applying eight elemental S levels
to the soil in a meadow steppe. We investigated soil
acidification impacts on enzyme activities and the
coupled relationships of microbial C:N ratios with their
bioavailable resources. We hypothesized that (1) S-
induced soil acidification could alleviate microbial N vs.
C limitation by increasing N supply but reducing micro-
bial N requirements by increasing the ratio of F:B; (2) to
cope with decreasing N limitation but increasing C limi-
tation, the microbial community would increase C:N-ac-
quiring enzymatic ratios; and (3) increasing microbial
CUE due to higher C requirements may counteract the
negative effects of enhanced metal stress on CUE under
soil acidification.

Materials and methods

Site description

This experiment was conducted in a semi-arid meadow
fenced since 2013 at the Erguna Forest-Steppe Ecotone
Research Station in Inner Mongolia, China (50° 10" N,
119° 23" E, 650 m a.s.l.). The long-term mean annual air
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temperature of this site is — 2.5 °C, and the mean annual
precipitation is 374 mm (according to the data from
1957 to 2016). The meadow grassland in this study is
dominated by Leymus chinensis, Stipa baicalensis, Carex
duriuscula, and Pulsatilla chinensis. The solil is classified
as chernozem (FAO) with a composition of 39% sand,
37% silt, and 24% clay. The soil bulk density is 1.21g
cm™3, and the average soil pH (0-10cm) is 6.8. No
fertilizer was added before this experiment, and natural
S deposition is lower than 04gSm™>year ' in this
grassland (Ge et al. 2014).

Experimental design and soil sampling

The S addition experiment was arranged in a random-
ized block design that was established in early 2017.
Eight rates of S addition (0, 1, 2, 5, 10, 15, 20, and 50 g S
m Zyear ') were assigned in each of five replicate
blocks. Each block consisted of eight plots of size 6 x 6
m and a 2-m buffer zone between adjacent plots. Lower
S addition rates (ie., 1 and 2gSm >year ') simulated
increasing natural acid deposition in recent decades (Yu
et al. 2017), and the higher rates mimicked aggravating
soil acidification induced by accumulative acid depos-
ition in the long term. Elemental S (>99.9% purity),
which has been widely used to modify soil pH in farm-
lands (Bole 1986) and grasslands (Owen et al. 1999), was
added evenly in the form of powder on May 20th each
year since 2017. Soil samples were collected in August
2018 (i.e., 3 months after the second-year S addition),
where five cores of topsoil (0-10cm) were taken ran-
domly and then mixed thoroughly for each plot. The ho-
mogenized soil samples were passed through a 2-mm
sieve to remove rocks and plant residuals immediately;
the sieved soil samples were transferred to the laboratory
within 2h and divided into three subsamples. Subsam-
ples for measuring microbial biomass, enzyme activities,
and inorganic nitrogen were stored at 4 °C before ana-
lysis, and subsamples for determining PLFAs were held
at — 20°C. The remaining soil samples were air-dried at
room temperature and used for the determination of the
soil abiotic characteristics.

Measurement of soil biochemical properties

Soil abiotic characteristics

Soil pH was measured in a soil slurry using a soil to
water ratio of 1:5 (w/v) by a pH meter (Precision and
Scientific Corp., Shanghai, China). Soil dissolved carbon
(DOC) and total dissolved nitrogen (TDN) concentra-
tions were extracted from 10 g of fresh soil with 40 mL
of 0.5 M K,SO, solution and determined using a TOC
analyzer (HT1300, Analytikjena, Jena, Germany). Other
soil abiotic characteristics, including soil organic carbon
(SOC), total nitrogen (TN), exchangeable AI**, and
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available Mn**, were determined using air-dried soil as
described in detail in Methods S1.

Soil microbial biomass

Soil microbial biomass carbon (MBC) and nitrogen
(MBN) were measured using the chloroform (CHCl3)
fumigation-extraction method within 7 days of sampling
(Vance et al. 1987). Microbial biomass was calculated as
E/k, where E = (dissolved element extracted from a fu-
migated soil sample) — (dissolved element extracted
from a non-fumigated soil sample) and conversion factor
k was 0.45 and 0.54 for MBC (Joergensen 1996) and
MBN (Brookes et al. 1985), respectively.

Soil enzyme activities

Enzyme measurements for (-glucosidase (BG), [B-N-
acetyl-glucosaminidase (NAG), and leucine aminopepti-
dase (LAP) were performed on fresh soil samples within
14 days after sampling with a colorimetric method using
p-nitrophenyl-B-D-glucopyranoside, ~ p-nitrophenyl-N-
acetyl-B-D-glucosaminide and leucine p-nitroanilide
(Sigma, St. Louis, USA) as the substrate under the opti-
mal pH, temperature and substrate concentrations (Rob-
ertson et al. 1999; Sinsabaugh et al. 1999; Tabatabai
1994) (a detailed description is provided in Methods S1).
Enzyme activities were expressed as pmol pNP per gram
soil per hour, and specific enzyme activities were calcu-
lated as mmol pNP per gram MBC per hour.

Microbial community composition

The microbial community composition of the soil sam-
ples was determined using the phospholipid fatty acids
(PLFAs) method. The PLFAs were extracted from frozen
soil samples and then separated and methylated (Bossio
and Scow 1998) before analysis. The methylated PLFAs
were then analyzed with an Agilent 7890A gas chro-
matograph (Agilent Technologies, Palo Alto, California,
USA) and identified with a MIDI Sherlock Microbial
Identification System (MIDI Inc., Newark, DE, USA).
The sum of the following PLFAs represents bacteria: i14:
0, 14:0, i15:0, al5:0, 15:0, i16:0, 16:0, 16:1w7c, 16:1w9c¢,
l6:1wllc, i17:0, al7:0, 17:0, cyl7:0, 17:108¢, 18:0, 18:
lw5c, 18:1w7¢, 18:1w9¢, 18:1w8t, and cy19:0 (Baath and
Anderson 2003; Frostegard and Baath 1996), and general
fungi were 18:2w6¢ (Baath and Anderson 2003; Olsson
et al. 1995). Here, we calculated the ratio of fungi to bac-
teria (F:B) using the concentrations of general fungi rela-
tive to the sum of bacterial PLFAs. We calculated
microbial stress biomarkers using the ratio of saturated
FAs (16:1 w5c¢, 17:1 08¢, and 18:1 w7c¢) to monounsatu-
rated FAs (14:00, 15:00, 16:00, 17:00 and 18:00) (sat:
mono) and cyclopropyl FAs (cyl7:0 + cyl19:0) to their
monoenoic precursor (16:1w7c + 18:1w7c) (cy:pre) (Kaur
et al. 2005; Siles et al. 2015).
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Calculations

Stoichiometric imbalance

We calculated the stoichiometric imbalance between mi-
crobes and their resources (i.e., total dissolved forms of
C and N) by dividing stoichiometric ratios of resources
by stoichiometric ratios of microbial biomass
(Mooshammer et al. 2014a). We used DOC and TDN as
resources for microorganisms rather than total organic
elements because these labile forms were considered to
be more accessible for microbes and thus better indica-
tors of microbial resources (Mooshammer et al. 2014a;
Zhang et al. 2019). Additionally, we also calculated the
stoichiometric imbalance using SOC:TN as a resource
stoichiometric ratio to compare with the labile forms.

Ecoenzymatic stoichiometry

Enzymatic stoichiometry was calculated as the ratio of
nutrient-acquiring enzyme activity (ie, BG as C-
acquiring enzyme and NAG + LAP as N-acquiring en-
zyme). A type II standard major axis (SMA) regression
analysis was conducted to detect the relationships be-
tween log.-transformed enzymes (in nmol pNP g™ soil
h™!) with the smatr package in R (Warton et al. 2012).

Threshold element ratios (TER)
We calculated the TER for C:N to understand the trade-
off between energy (i.e., carbon) and nitrogen controls of
microbial communities in response to soil acidification,
which connects the EST with the Metabolic Theory of
Ecology (MTE) using the following equations (Sinsa-
baugh et al. 2009):

TERcxn = (Ecav xBea)/mo (1)

where TERc.y is the threshold element ratio (dimen-
sionless) for C:N; Ecy represents the ratio of C-
acquiring enzyme (BG) to N-acquiring enzymes (NAG +
LAP); Bc.y represents the C:N ratio of soil microbial bio-
mass; and ng is a dimensionless constant calculated by
raising e to the intercept of the SMA regression relation-
ship between log. (BG) and log. (NAG + LAP). We
compared the estimated TERc with DOC:DON, with a
higher TER indicating that microbial growth was limited
by energy (net nitrogen mineralization), while a lower
TER represented N limitation (net N immobilization)
(Sinsabaugh et al. 2013).

Carbon and nitrogen use efficiency
We calculated the CUE and NUE based on the C:N stoi-
chiometry of soil resources, microbial mass and enzymes
(Sinsabaugh et al. 2016) using equations (2), (3), (4), and
(5):

CUE = CUEmax [SC:N/(SC:N + I()] (2)

SC:N = (I/EC:N) (BC:N/LC:N) (3)

NUE = NUEmax [SN:C/(SN:C + I()] (4')

Snic = (1 = 1VEen) (Lean/ Ben) (5)
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where CUE,,.x is 0.6 and represents the upper limit for
microbial growth efficiency based on thermodynamic con-
straints (Roels 1980; Sinsabaugh et al. 2013) and NUE,,,,
is fixed to 1.0 (Sinsabaugh et al. 2016); Sc.y represents the
extent to which enzymatic allocations offset the differ-
ences between the elemental composition of soil resources
and microbial biomass; K is the half-saturation constant
(0.5); L represents the C:N ratio of soil labile resources
(i.e, DOC: TDN) (Sinsabaugh et al. 2016). The estimated
microbial CUE and NUE were proven to be effective in
predicting nutrient requirements and use efficiency (Geyer
et al. 2019) and closely matched the physiological metab-
olism process, such as microbial respiration (Yuan et al.
2019) and ammonification rate (Zechmeister-Boltenstern
et al. 2015). The reliability of estimated CUE to predict
microbial carbon utilization was further proven by the
negative correlation between estimated CUE and micro-
bial metabolic quotient in our study (Appendix 3 in the
Supporting Information).

Statistical analysis

The Kolmogorov-Smirnov test and Levene's test were per-
formed to ensure the normality of data and homogeneity of
variances. We used a linear mixed-effects model to test the ef-
fects of S on soil biochemistry indices, enzyme activity, and stoi-
chiometry. S addition rates were designated as fixed effects with
blocks as random effects. Duncan’s multiple range test was con-
ducted to detect the differences between each S addition rate (P
<0.05). We used a linear regression analysis to test the correl-
ation between variables and decreasing soil pH.

We conducted a structural equation modeling (SEM)
analysis in this study to examine the direct and indirect
strength of soil acidification on microbial nutrient cycling.
In this analysis, we assumed that a decrease in soil pH
may first alter the stoichiometry of microbial biomass and
its resources and toxic metal ions, thus affecting stoichio-
metric imbalance and microbial stress and further causing
changes in enzyme stoichiometry and nutrient use effi-
ciency (Table S1 and Fig. S1). Principal component ana-
lysis (PCA) was conducted to simplify our models using
the extracted PC1 values of toxic metal concentrations
(e, AI** and Mn2*) and microbial stress biomarkers (in-
cluding sat:mono and cy:pre), respectively (Fig. S2). The
piecewise SEMs were finally established with Amos 24.0
(Amos Development Co., Greene, Maine, USA) using the
maximum likelihood estimation method. The y* test (P >
0.05), root square mean errors of approximation (RMSEA
<0.08), and Akaike information criteria (AIC) were used
to evaluate the adequacy of the model.

Results

Responses of soil abiotic properties to S addition

Soil pH showed a significant decrease from 6.87 to 5.99
with the increasing rate of S addition (P <0.01, Fig. 2),
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while the exchangeable H* and AI’* increased by up to
82.62% and 52.71%, respectively (P <0.01, Table S2). In
addition, soil available Mn>** concentrations increased sig-
nificantly along the S addition gradient (Table S2). Sulfur
addition increased the ratio of SOC:TN from 11.86 to
12.32 (P = 0.04, Fig. S3). Soil DOC and TDN increased (P
<0.01, Table S2) along the S addition gradient. We ob-
served a significantly lower DOC:TDN in the S addition
treatments than in the control plots, which was positively
correlated with soil pH (R*= 0.15, P = 0.03, Fig. 2b). Sulfur
addition significantly decreased the NO3; -N concentra-
tion but increased DON (P < 0.01, Table S2).

Responses of microbial biomass, stoichiometric
imbalance, and community structure to S addition

Sulfur addition decreased both soil MBC and MBN
(Table S2) but increased MBC:MBN along with decreas-
ing soil pH (R*= 0.39, P <0.01, Fig. 2c), resulting in a
dramatic decline in the C:N imbalance from 0.42 to 0.24
(R’= 0.29, P <0.01, Fig. 2d). Sulfur addition significantly
decreased the total PLFAs (R*= 0.13, P = 0.03, Fig. 3a)
but increased the relative abundance of fungi (R*= 0.43,
P <0.01, Fig. 3c). However, the relative abundance of
bacteria was the lowest at the highest level of S addition
(Fig. 3b), causing a significant increase in the ratio of
fungi to bacteria (F:B) with soil acidification. With re-
spect to soil microbial stress indicators, S addition in-
creased the ratios of saturated-to-monounsaturated
PLFAs (satmono) and cyclopropyl FA-to-monoenoic
precursor (cy:pre), with both ratios negatively relating to
soil pH (P < 0.01, Fig. 3e, f and Fig. S2b).

Responses of ecoenzymatic stoichiometry and threshold
element ratio to S addition

Soil BG and LAP activity decreased with S-induced acid-
ification (P <0.01, Fig. 4a, c). The NAG activity (P =
0.19, Fig. 4b) and BG: (NAG + LAP) ratio showed no re-
sponse to S addition (Fig. 4d), while the BG:LAP ratio
increased significantly with increasing S addition rate
and decreasing soil pH (Fig. 4e). The significant correl-
ation was observed between the BG:LAP ratio and the C:
N imbalance (Fig. 4f). Specific NAG activity (per unit of
MBC) increased with decreasing pH (Fig. S4). The type
II regression showed that C- and N-acquiring enzyme
activities were positively correlated (R*= 0.65, P <0.01,
Fig. S5). The TER increased with decreasing soil pH
under S addition (R*= 0.18, P < 0.01, Fig. 5a).

Responses of microbial nutrient-use efficiency to S
addition and linkages with the stoichiometric imbalance
and community structure

Compared with the control plot, high rates of S addition
significantly increased CUE (Fig. 5b) but decreased NUE
(Fig. 5c¢). Significant correlations were observed between
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soil pH and CUE (negative, R*= 0.24, P <0.01, Fig.
5b), and between soil pH and NUE (positive, R*=
0.25, P <0.01, Fig. 5¢).

Our final SEMs fit the data well (yY*cug = 30.54,
Pcye = 0.082 and y*nue = 3142, Pyue = 0.088, re-
spectively) and explained 54% and 51% of the total
variance in CUE and NUE, respectively (Fig. 6a, c).
The piecewise SEM analyses showed that soil acidifi-
cation (i.e., decreasing pH) under S addition increased
CUE but decreased NUE by enhancing the F:B ratio
and BG:LAP ratio and reducing the C:N imbalance
(Fig. 6b, d). Additionally, soil acidification also

indirectly decreased NUE by increasing toxic metal
concentrations and microbial stress (total standard ef-
fect size = — 0.16 and - 0.21, respectively, Fig. 6c).

Discussion

Sulfur-induced soil acidification enhanced microbial C
relative to N limitation

Consistent with our first hypothesis, soil acidification al-
leviated N limitation but aggravated C limitation for the
microbial community, as indicated by the increase in
TER but the decrease in the C:N imbalance between mi-
crobial biomass and dissolved nutrients (Fig. 2d). The
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TER is a useful indicator for predicting microbial nutrient
limitation compared with resource stoichiometry (Frost
et al. 2006) and nitrogen limitation occurs when the C:N
ratio is greater than the TER (Sinsabaugh et al. 2013). In
this study, DOC:TDN was greater than the TER under
high soil pH (i.e,, higher than 6.6) but lower than the TER
when the pH was lower than 6.6 (Fig. 2b and 5a), suggest-
ing a conversion from N limitation to C limitation with
soil acidification.

One crucial explanation for alleviating N limitation
was the increasing N supply for the microbial commu-
nity (Table S2) through inhibiting N leaching loss (Kem-
mitt et al. 2005; Van Den Berg et al. 2005) and plant N
uptake (Vanguelova et al. 2007) under soil acidification.
Additionally, increasing C vs. N limitation was poten-
tially from the lower root exudation, one of the most
critical microbial C resources, under soil acidification
(Treseder 2008). However, the converse trends of DOC:
TDN with SOC:TN in our study corroborated previous
studies showing the differential responses of labile and
total soil nutrient stoichiometry to changing soil pH
(Guo et al. 2020; Yuan et al. 2019). Despite similar
trends between the C:N imbalance calculated from
DOC:TDN and SOC:TN, only dissolved nutrients con-
tributed to the variation in stoichiometric imbalance

(Fig. 6 and Fig. S3c). These results suggested that dis-
solved nutrient stoichiometry could be a better indicator
for nutrient limitation, also reported in regional-scale
studies (Wild et al. 2015), field manipulation experi-
ments (Guo et al. 2020; Yuan et al. 2019), and modeling
studies (Kaiser et al. 2014).

Another mechanism of increasing microbial C limitation
was the relatively higher C requirement, as evidenced by
the higher MBC:MBN ratio (Zechmeister-Boltenstern
et al. 2015) under elemental S addition (Fig. 2), which was
primarily attributed to the higher F:B ratio (Fig. 3). Bac-
teria have a relatively narrow pH range for growth and are
vulnerable to soil acidification (Fig. S6a), whereas fungi
tend to be more tolerant (Fig. S6b) (Rousk et al. 2010a;
Rousk et al. 2009). Moreover, fungi have a higher biomass
ratio of C:N than bacteria (Strickland and Rousk 2010),
contributing to an increased C:N ratio and C requirement
of the microbial community under soil acidification (Fig.
6a). Our results suggested that acidification-induced
changes in soil microbial community structure played a
considerable role in regulating biomass stoichiometry.

Decreasing N limitation and increasing C limitation
were also found in N-addition experiments (Schleuss
et al. 2019; Yuan et al. 2019), accompanied by soil acid-
ification. This shift in C and N limitations with N
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addition was attributed to changes in soil resource stoi-
chiometry (i.e., higher N input with N addition rates)
(Yuan et al. 2019). However, being different from N-
addition studies, variations in stoichiometric imbalance
(ie, increasing C to N limitation here) were better

explained by microbial biomass stoichiometry (i.e., nutri-
ent demand, standard effect size = — 0.76) rather than
resource stoichiometry (i.e., nutrient supply, standard ef-
fect size = 0.41) under S-induced soil acidification (Fig.
6). This calls for future N-addition studies to combine

il
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addition rates at the level of P < 0.05. The scatter subplot in each panel demonstrates the relationship between soil pH and corresponding
variables, the linear regression is fitted when P < 0.05 (with R’ and P shown). The gray area represents 95% confidence interval
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Fig. 6 Structural equation modeling (SEM) illustrating the effects of soil acidification on microbial carbon use efficiency (CUE, a) and nitrogen use
efficiency (NUE, c) through changing the microbial community structure and C:N imbalance between microbial biomass and resources. Solid
arrows indicate significant positive (black) and negative (red) effects and numbers adjacent to arrows are standardized path coefficients.
Percentages next to the endogenous variables indicate the variance explained by the model (R%). SEM calculated standardized total effect sizes of
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acid and nutrient additions when evaluating the effects
of soil acidification on microbial nutrient limitation
(Averill and Waring 2018). Moreover, regarding the high
turnover of dissolved nutrients and microbial biomass as
affected by soil microclimate and plant growth (Bardgett
et al., 2005), multiple samplings over the growing season
are still needed.

Microbial community increased soil C- to N-acquiring
enzyme ratio to cope with higher C limitation under soil
acidification

Soil microorganisms secrete extracellular enzymes to ac-
quire limited elements from organic matters (Waring
et al. 2013). Although a substantial part of extracellular
enzymes are stabilized in the soil matrix (Allison 2006)
and lack association with active cells (Nannipieri et al.
2018), they can still reflect the catalytic history of a soil
as continuously imprinted by soil microorganisms in

response to environmental changes (Dilly and Nannipieri
2001). Therefore, changes in enzymatic activities and
stoichiometry are widely regarded as effective indicators
of microbial nutrient status in long-term observations
(Schleuss et al. 2019; Tapia-Torres et al. 2015; Yuan
et al. 2019). Our results showed alteration of enzymatic
activities to adapt to decreasing C:N imbalance (Fig. 4f),
which partially supported our second hypothesis. Adjust-
ing elemental acquisition through regulating enzyme ac-
tivities is one of the most important strategies for
microbial communities to maintain elemental balances
and activities in terrestrial ecosystems (Sterner and Elser
2002; Waring et al. 2013), especially in nutrient-limited
areas (Tapia-Torres et al. 2015). Here, we found that
specific BG activity (per unit MBC) remained un-
changed, while specific LAP decreased with soil acidifi-
cation (Fig. S4), indicating that the microbial community
tended to invest less energy in producing N-acquiring
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enzymes relative to C-acquiring enzymes to cope with
increasing C to N limitation. However, specific NAG ac-
tivity (per unit MBC) increased with soil acidification
(Fig. S4), which could be attributed to several mecha-
nisms: (i) NAG is also regarded as a C-acquiring enzyme
when N is sufficient and usually increases with N
addition in temperate grasslands (Schleuss et al. 2019;
Wang et al. 2015) because NAG (i.e., chitinase) is re-
sponsive for hydrolyzing chitin (i.e., N-containing poly-
saccharide) (Sdmi Laszl6 et al. 2001). (ii) NAG
production is expected to increase with higher fungal
abundance (Fig. 3) concurrent with higher chitin pro-
duction from fungal necromass (i.e., more substrate for
NAG) under soil acidification. Similarly, experimentally
manipulating microbial communities to decrease F:B ra-
tio substantially reduces NAG activity even in the ab-
sence of changes in pH (Domeignoz-Horta et al. 2020).
Therefore, we should be more cautious when treating
NAG activity simply as an N-acquiring enzyme, espe-
cially in areas where chitin could be an essential C
source (Mori 2020). Instead, we found that the BG:LAP
ratio could better predict microbial C vs. N limitation, as
suggested by the significant correlation between the BG:
LAP ratio and the C:N imbalance (Fig. 4f). One possible
reason is that bacteria depend more on proteins as a
source of N (Hofmockel et al. 2010). The N-acquisition
strategy of our bacteria-dominated community was
largely correlated with LAP consequently. Our result
was also supported by the resource allocation theory that
microbial communities might increase enzyme produc-
tion to mine the scarcest elements (Allison and Vitousek
2005). Moreover, here we used optimal pHs for enzymes
to determine maximum potential activities (Tabatabai
et al. 1994) and allow comparison with other studies
(Nannipieri et al. 2018), but the pH optimum for some
extracellular enzymes may shift under long-term pH ma-
nipulation due to changes in functional microbial com-
munities (Puissant et al. 2019). Therefore, the role of
changing pH in enzyme assay should be considered in
further researches. Overall, our results showed that the
microbial community could alter enzyme production to
adapt to increasing C limitation induced by soil
acidification.

Microbial community increased soil CUE but reduced NUE
to cope with higher C limitation under soil acidification

Based on EST, microbial communities tend to regulate
their element utilization strategies by adjusting the
physiological process of element-use efficiencies to adapt
to element-limiting environments (Mooshammer et al.
2014a; Sterner and Elser 2002). Consistent with our ex-
pectation, the C:N imbalance between microbial biomass
and their resources was a key factor contributing to
CUE and NUE variations under soil acidification (Figs. 6,
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S7). The negative correlation between the C:N imbalance
and CUE suggested that alleviated N limitation allowed
the microbial community to allocate more C to building
biomass rather than providing energy for N acquisition
with soil acidification. This was in line with Spohn et al.
(2016) who observed an increase in the CUE of micro-
bial communities with increasing N supply for microbes.
Analogously, the microbial community releases more
ammonium (ie, low NUE) when decomposing sub-
strates with a high CN ratio (Mooshammer et al.
2014b), suggesting that the changes in microbial N
utilization largely depend on N in their resources (Kei-
blinger et al. 2010). Here, we also found a potential shift
from net N immobilization to mineralization, as sug-
gested by increasing TER with soil acidification, which
was supported by Li et al. (2020), who found that N
mineralization increased with decreasing soil pH. The
increasing F:B ratio showed a positive effect on microbial
CUE but negatively affected NUE (Fig. S7) because fun-
gal communities usually have higher C requirements
and CUE than bacterial communities (Riggs and Hobbie
2016). Additionally, both CUE and NUE showed signifi-
cant correlations with BG:LAP, as we expected, support-
ing the principle of “return on investment” (Schimel and
Weintraub 2003) that microbes invest more C in produ-
cing C-acquiring enzymes than N-acquiring enzymes
(i.e., higher BG:LAP; Fig. 4e) to mineralize more C from
substrates and increase the flow of C back to the mi-
crobes (i.e., higher CUE) to cope with increasing C
limitation.

Our results clearly showed that microbes with high S
addition rates were facing higher stresses, as suggested
by PLFA stress indicators (i.e., ratios of sat:mono and cy:
pre, Fig. 3d, ). Higher sat:mono and cy:pre ratios reflect
lower fluidity of the cell membrane (Los and Murata
2004) and stationary growth phase of microbes (Bossio
and Scow 1998), respectively, both of which were proven
to be efficient in predicting acidity and metal stresses
(Akerblom et al. 2007; Garcia-Sanchez et al. 2015; Rousk
et al. 2010b). Decreased microbial CUE and NUE might
result from microbes overcoming metal stress through
the C- and N-costly pathways of cation efflux pumps, re-
active oxygen scavenging, secretion of detoxifying com-
pounds and elevating genes for metal resistance (Auger
et al. 2013; Malik et al. 2017; Silver et al. 1989). How-
ever, the 13% increase in CUE with soil acidification in
our study suggested that the negative effect of microbial
stress was offset by the pathway of stoichiometric con-
trols on microbial CUE (Fig. 6a). The different responses
of microbial CUE to acidification between our study and
previous studies may largely be attributed to different
ranges of soil pH. The pH range (from 6.9 to 5.9) in our
study was much higher than the pH threshold (5.5) pro-
posed by Jones et al. (2019) at which detrimental effects
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of exchangeable Al occurred. This suggests that the ef-
fect of changing pH on CUE can vary significantly de-
pending on the initial soil pH and ecosystem type.
Although our study proved a stronger regulation by stoi-
chiometric adaption than metal toxicity in soil acidifica-
tion, whether the negative effects of growing microbial
stress under high atmospheric N and S deposition, espe-
cially when soil pH falls below 5.5, would exceed the
capacity of microbial adaption to element limitation is
still an open question. Consequently, more long-term
observations are needed for a better understanding of
microbial adaption to soil acidification.

Conclusions

Our study demonstrated that soil acidification resulted
in conversion from microbial N limitation to C limita-
tion, as suggested by a decrease in the C:N imbalance
between microbial biomass and their resources in calcar-
eous grassland soils. To cope with the increasing C vs. N
limitation, the microbial community tended to alter en-
zyme production and increase CUE but decrease NUE
under soil acidification. Our results revealed that chan-
ging the nutrient-use efficiencies of the microbial com-
munities under soil acidification was not only a
microbial adjustment to increasing N availability but,
more importantly, an adaption to an altered community
structure. Our results also highlighted the importance of
stoichiometric controls on microbial elemental use effi-
ciency relative to the detrimental effects of metal stress.
However, long-term observation is needed because a
continuous drop in pH may aggravate the adverse effects
of metal stress on microbial nutrient acquisition and
utilization processes. These findings may improve the
understanding of soil microbe-driven nutrient cycling
and help better simulation and projection of future dy-
namics of terrestrial biosphere under climate change.
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