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Spatial point-pattern analysis as a powerful
tool in identifying pattern-process
relationships in plant ecology: an updated
review
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Abstract

Background: Ecological processes such as seedling establishment, biotic interactions, and mortality can leave
footprints on species spatial structure that can be detectable through spatial point-pattern analysis (SPPA). Being
widely used in plant ecology, SPPA is increasingly carried out to describe biotic interactions and interpret pattern-
process relationships. However, some aspects are still subjected to a non-negligible debate such as required sample
size (in terms of the number of points and plot area), the link between the low number of points and frequently
observed random (or independent) patterns, and relating patterns to processes. In this paper, an overview of SPPA
is given based on rich and updated literature providing guidance for ecologists (especially beginners) on summary
statistics, uni-/bi-/multivariate analysis, unmarked/marked analysis, types of marks, etc. Some ambiguities in SPPA are
also discussed.

Results: SPPA has a long history in plant ecology and is based on a large set of summary statistics aiming to
describe species spatial patterns. Several mechanisms known to be responsible for species spatial patterns are
actually investigated in different biomes and for different species. Natural processes, plant environmental
conditions, and human intervention are interrelated and are key drivers of plant spatial distribution. In spite of
being not recommended, small sample sizes are more common in SPPA. In some areas, periodic forest inventories
and permanent plots are scarce although they are key tools for spatial data availability and plant dynamic
monitoring.

Conclusion: The spatial position of plants is an interesting source of information that helps to make hypotheses
about processes responsible for plant spatial structures. Despite the continuous progress of SPPA, some ambiguities
require further clarifications.

Keywords: Spatial analysis, Point-pattern, Summary statistics, Second-order characteristics, Spatial structure, Species
interactions, Competition, Facilitation, Positive association, Negative association

Background
In its large sense, structure is a central concept for de-
scribing relationships within a system and its patterns
(Gadow et al. 2012). Forest structure commonly denotes
the mode of the spatial distribution of tree attributes

within a forest ecosystem and the association of their
characteristics (Gadow et al. 2012; Hui et al. 2019). In
these ecosystems, every single plant represents a struc-
tural component, with attributes such as species identity,
abundance, size, and spatial arrangement (Hui et al.
2019). In spatial analysis, a forest stand is represented by
a set of points or events (trees in our case), that is, a set
of mapped point locations (x, y coordinates) within a
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study area (Wiegand and Moloney 2004; Pommeren-
ing et al. 2011). A spatial pattern means the
organization of these points in space which shows
some degree of predictability (Dale 1999). Thus,
spatial structure of the stand can be described by that
of the pattern (Goreaud 2000).
Ecological processes such as seedling establishment,

biotic interactions, and mortality can leave footprints on
species distributions that can be detectable based on
spatial pattern analyses (Petritan et al. 2014; Law et al.
2009). In plant communities, studying spatial pattern is
motivated by the fact that understanding these commu-
nities is firstly based on the description and quantifica-
tion of their spatio-temporal characteristics (Dale 1999).
For the reason that one species can exhibit either a posi-
tive or negative effect on the existence and spatial distri-
bution of another species, one main result of spatial
pattern is its influence on other species (Dale 1999). The
main aim and challenge of spatial point-pattern analysis
(SPPA hereafter) is relating pattern and process, but
generally, assessing plant spatial pattern is relatively easy
than identifying underlying processes (Perry et al. 2006;
Velázquez et al. 2016). The observed structure may re-
flect related processes: for example a regular distribution
could reflect a competitive interaction (Wiegand and
Moloney 2004). Consequently, structure and process are
dependent; particular structures create specific processes
of regeneration, growth, and mortality; conversely, these
processes create specific structural arrangements
(Gadow et al. 2012).
Spatial structure and tree sizes are related and gener-

ally affected by negative interaction which can occur at
two levels: below-growth for water and nutrients, and/or
above-growth for light (Getzin et al. 2006; Yılmaz et al.
2019). Thus, in forest communities, competition, species
growth, and their mortality are powerful organizing pro-
cesses which shape species spatial patterns (Dale 1999;
Getzin et al. 2008b; Gadow et al. 2012; Petritan et al.
2014). However, one should be careful when interpreting
the observed pattern since the same pattern may be in-
duced by several processes (Wiegand and Moloney
2004) such as regeneration, growth, competitive inter-
action, reproduction, and plant death mechanisms (Dale
1999). Similarly, conditional on environmental factors,
the same ecological process can produce different spatial
patterns (Perry et al. 2006).
Studying spatial association between trees at both

intra- and interspecific levels is important to reveal the
existence of interactions and their types (Jia et al. 2016).
SPPA has been mostly carried out for woody species
compared to herbaceous plants (but see Riginos et al.
2005; De Luis et al. 2008; Raventós et al. 2010) and vari-
ous mechanisms controlling species spatial patterns are
currently investigated in temperate (Getzin et al. 2006;

Hao et al. 2007; Wang et al. 2010a; Zhang et al. 2010,
2013; Martínez et al. 2013; Liu et al. 2014; Yao et al.
2016; Carrer et al. 2018; Wang et al. 2018; Szmyt and
Tarasiuk 2018; Zhang et al. 2020), tropical (Wiegand
et al. 2007a; Lan et al. 2012; Miao et al. 2018; Nguyen
et al. 2016; Cordero et al. 2016; Ribeiro et al. 2021,
Nguyen et al. 2018a, 2021) and Mediterranean regions
(Camarero et al. 2005; De Luis et al. 2008; Lingua et al.
2008; Comas et al. 2009; Raventós et al. 2010; Garcia-
Cervigon et al. 2017; Abellanas and Pérez-Moreno 2018;
Ben-Said et al. 2020). Assuming the crucial role of biotic
processes to be a driver of species spatial pattern, vari-
ous environmental factors can be involved in structuring
plant communities including water availability (Zheng
et al. 2017), soil nutrients (Riginos et al. 2005; Zhao
et al. 2015), moisture (Fajardo et al. 2006; LeMay et al.
2009), light (Iszkulo et al. 2012; Jia et al. 2016), topog-
raphy (Liu et al. 2014; Zhao et al. 2015), herbivores (Gar-
cia-Cervigon et al. 2017; Wang et al. 2020a,b), and pests
(Bassil et al. 2018), as well as human factors such as
management practices (Navarro-Cerrillo et al. 2013;
Gradel et al. 2017; Kuehne et al. 2018; Erfanifard et al.
2019; Li et al. 2020b; Baran et al. 2020) and disturbances
(North et al. 2004; Motta and Edouard 2005; Batllori
et al. 2010; Owen et al. 2017; Ziegler et al. 2017). The
ability to adapt to habitat conditions differed between
species, resulting in different spatial structures (Wang
et al. 2010b).
Environmental factors are commonly assessed by

first-order summary statistics (summary or character-
istics) and are known to act at a large scale, while bi-
otic interactions are detected by second-order
summary statistics (SOSS hereafter) and are recog-
nized to operate at a small scale. These SOSS are
based on the overall point-to-point distances in a
mapped region; they are key tools for identifying
spatial pattern types and scales (Wiegand and Molo-
ney 2004). Indeed, species interactions were linked to
short-scale patterns while environmental variables af-
fected large-scale ones (Ziegler et al. 2017). However,
taking into account one component could not allow
the detection of real mechanisms behind a given
spatial structure (Zhao et al. 2015; Jia et al. 2016).
In addition to many detailed and technical textbooks

on SPPA (e.g. Stoyan and Stoyan 1994; Diggle 2003,
2014; Illian et al. 2008), there are some important basic
references such as Wiegand and Moloney (2014) which
provide a wide variety of application examples and re-
lated interpretation, as well as many useful papers
reviewing SPPA such as Stoyan and Penttinen (2000),
Wiegand and Moloney (2004), Perry et al. (2006), Szmyt
(2014), Velázquez et al. (2016), González et al. (2016)
and Pommerening and Sánchez Meador (2018). Some
other important references, in French, can also be very
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useful for beginners (e.g. Goreaud 2000; Goreaud and
Pélissier 2001).
In spite of the continuous progress, the solid theoret-

ical background, and the wide applications of SPPA in
plant ecology, some difficulties may arise when conduct-
ing this analysis type due to many sorts of ambiguities.
For example, there is no clear consensus about the mini-
mum sample size required (in terms of points and plot
area). Independent patterns may occur when using a low
number of trees (e.g. Wehenkel et al. 2015; Cordero
et al. 2016) which can obscure the real spatial pattern.
Thus, it was the motivation for me to write this paper
which is particularly addressed to beginners who did not
have sufficient background on SPPA. Indeed, the main
elements of SPPA applied to plant ecology are briefly
reviewed, and then some related difficulties are dis-
cussed. Furthermore, this paper contains a wide range of
literature on different aspects of SPPA such as analysis
types, test functions, null models, and marks commonly
used in ecological studies whose reader could directly
consult according to its research question. Here, I did
not focus on the rigorous mathematical formulas of test
functions—for this, the reader should refer to the de-
tailed textbooks (e.g. Stoyan and Stoyan 1994; Diggle
2003, 2014; Illian et al. 2008; Wiegand and Moloney,
2004, 2014).

A simple overview on summary statistics
A spatial pattern can be represented by a point pattern
(e.g. trees) which consists of a set of mapped point loca-
tions in a study area (Wiegand and Moloney 2004,
Fig. 1). In a point process, each single tree can be con-
sidered a point. Therefore, SPPA studies the spatial ar-
rangement of points. The sample plot is commonly

called the observation window (symbolized by W) which
is usually a rectangular or circular area and is selected to
offer representative data of the investigated community
(Pommerening et al. 2011).
Started in the 1970s, point process statistics for

spatial structures became a mature discipline and in-
creasingly used by researchers (Stoyan et al. 2017).
Spatial point-pattern analysis has a long history in
plant ecology and is based on a large set of test sta-
tistics known as summary statistics (Perry et al.
2006). They aim to evaluate and describe statistical
properties and spatial structure of point patterns
(Wiegand and Moloney 2014). Point patterns are
often influenced by two types of effect (Goreaud
2000; Wiegand and Moloney 2004, 2014):

1. First-order effects: produce a variation in the
intensity of point-pattern (i.e. the density, often
symbolized by λ) in response to some causal vari-
able (e.g. influence of soil properties on the pres-
ence of a plant). Thus, they are evaluated by first-
order statistics introduced by the point pattern in-
tensity which represents the average number of
points per unit area. Since it varies with position,
the point’s local intensity function depends on pos-
ition x (i.e. λ (x)).

2. Second-order effects: result from interactions
between points (e.g. facilitation assumed by adult
plants towards recruits). Thus, they are assessed by
SOSS which are based on the spatial relationships
between pairs of points. In contrast to first-order
statistics, many SOSS are available.

Fig. 1 Conversion of field data (a) to a list of points coordinates (b) then to a point pattern (c) (Modified from Goreaud 2000). In the sampled
area, each plant is represented by its Cartesian coordinates (x, y) which serve as a basis to represent stand spatial structure
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First-order statistics vary depending on environmental
factors (e.g. topographic variables) and are known to act
over a large scale, while SOSS are used to assess biotic
interactions that are detected at a small scale (Ziegler
et al. 2017). Second-order statistics are based on the
overall small-scale point-to-point distances within a
mapped area; they are key tools for identifying types and
scales of spatial patterns (Wiegand and Moloney 2004).
Accordingly, the correspondent spatial analysis methods
are divided into two groups:

1. Nearest neighbour analysis (first-order and refined):
analyse the intensity λ of a point pattern and its
variation at a large scale (Wiegand and Moloney
2004). They consist of indices such as Clark and
Evans index and refined nearest neighbour analysis
such as nearest neighbour distribution function
Dk(r) and spherical contact distribution Hs(r)
(Wiegand and Moloney 2004; Illian et al. 2008;
called also G(y) and F(y), respectively, by Diggle
2003). They calculate, for each point, a spatial
structure index with respect to n nearest
neighbours (generally n = 4). They can be applied
for small sample plots and over limited distances
(Goreaud 2000; Perry et al. 2006).

2. Second-order statistics: are functions which rely on
a distance variable r and measure correlations
between all pairs of points distant by r (Gadow
et al. 2012). They are key tools for identifying
spatial pattern types and critical scales below which
significant interactions arise and at which distances
they are neutral, positive, or negative (Perry et al.
2006; Wiegand and Moloney 2004; Wiegand et al.
2007a). These methods are very expensive (in terms
of effort and time) requiring complete mapped
points within a large area (Goreaud 2000). Among
these statistics, Ripley’s K-function K(r) (Ripley
1977) or its modified version L-function (Besag
1977) and the pair-correlation function g(r) (Stoyan
and Stoyan 1994) are by far the most used by ecolo-
gists (Velázquez et al. 2016).

Both method groups have particular advantages and
weaknesses. The first group is conceptually simple but
short-sighted, that is, they only quantify the relationship
between a tree and its n nearest neighbours and ignore
what is beyond these neighbours (Stoyan and Penttinen
2000; Pommerening et al. 2011). However, keeping these
limitations in mind, first-order nearest neighbour statis-
tics are useful and may be considered a first step in
spatial analysis (Perry et al. 2006). Because of the short-
comings of this method, SOSS are preferred when
mapped data are available from a large observation win-
dow (Pommerening and Stoyan 2006). In the present

paper, I focus on SOSS which provide detailed informa-
tion about forest structure instead of first-order statis-
tics. The readers who are interested in the first-order
methods can found rich information in Pommerening
(2008), Gadow et al. (2012), and Pommerening and Sán-
chez Meador (2018), as well as some interesting applica-
tions such as Zhang et al. (2018), Li et al. (2017), and
Nguyen et al. (2018a). Recently, there are many studies
that introduced interesting methods in SPPA (e.g.
Wälder and Wälder 2008; Ledo et al. 2011; Stoyan et al.
2017; Ballani et al. 2019).

Second-order summary statistics
Unmarked spatial pattern analysis
When only point locations (x, y) are considered, the cor-
responding analysis is commonly designated as “un-
marked analysis”. There are different levels of analysis:
univariate analysis takes into account only one type of
pattern which can be one species, one size (or age) class,
one life stage, etc. In the bivariate mode, two patterns
are investigated (two different species, two size classes
such as adult vs. seedlings, two life stages such as under-
story vs. overstory, etc), while multivariate analysis stud-
ies more than two patterns. Univariate analysis is by far
the most performed by ecologists (Velázquez et al.
2016). Currently, several SOSS are available (see Wie-
gand et al. 2013, Wiegand and Moloney 2014). Table 1
focuses on the most used SOSS found in the literature
and related applications. In this table, the choice of the
test functions was based on the range provided by the
Programita software (Wiegand and Moloney 2014) since
it is the most used by ecologists (Velázquez et al. 2016,
Table 2), it is quite easy and has a detailed descriptive
documentation (e.g. Wiegand 2014) which provides sev-
eral application examples with their comprehensive in-
terpretation. However, given that Programita is a
specialized software designed specifically for SPPA, ecol-
ogists that are familiar with R (R Development Core
Team 2019 using the “spatstat” package (Baddeley et al.
2015) can conduct different SPPA types with the wide
range of packages available in R. Other interesting soft-
ware is also available (see Szmyt 2014, p.23, Table 2).
Until the end of the twentieth century, the most used

summary statistic was by far Ripley’s K-function K(r)
(Wiegand and Moloney 2004) and its modified version
L-function L(r) (Besag 1977). However, due to the cu-
mulative characteristic of K(r) (Wiegand and Moloney
2004), the pair-correlation function g(r) (Wiegand and
Moloney 2004, Table 1) is becoming increasingly used.
However, K- and g-functions are designated for homoge-
neous patterns (in term of intensity) (Pélissier and Gor-
eaud, 2001) and environmental heterogeneity produces a
spatial variation in intensity resulting in a systematic bias
in the calculated functions (Schiffers et al. 2008) and
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Table 1 Second-order summary statistics commonly used in spatial point-pattern analysis. In the univariate analysis, only one
pattern is involved (e.g. one species, one size or age class, one life stage, etc.), while in the bivariate version two patterns (1 and 2)
are investigated (e.g. two different species, two size classes, two life stages, etc.). For the mark correlation analysis, the most studied
mark is by far tree diameter. In the case of random labelling analysis, the marks usually consist of tree status (e.g. dead vs living). For
all analysis types, positive, negative, or absence of departure from the null model simulation envelopes occurs at a given scale r

Statistic
function

No departure from the null
model

Positive departure Negative departure Examples of
application

Value Interpretation Value Interpretation Value Interpretation

Unmarked univariate analysis

O-ring
statistic O(r)
(Wiegand
et al. 1999;
Wiegand
and
Moloney
2004)

O(r) = λ Points of the pattern
are randomly
distributed

O(r) > λ Points of the pattern
are aggregated

O(r) < λ Points of the pattern
are segregated

Hao et al. 2007; De Luis
et al. 2008; Navarro-
Cerrillo et al. 2013; Kang
et al. 2014; Cordero et al.
2016; Hu et al. 2017; Miao
et al. 2018; Bassil et al.
2018; Zhang et al. 2020;
Wang et al. 2020b

Pair-
correlation
function
g(r) (Stoyan
and Stoyan
1994)

g(r) = 1 Points of the pattern
are randomly
distributed

g(r) > 1 Points of the pattern
are aggregated

g(r) < 1 Points of the pattern
are segregated

Pélissier 1998; Wiegand
et al. 2007a; Suzuki et al.
2008; LeMay et al. 2009;
Comas et al. 2009; Batllori
et al. 2010; Wang et al.
2010a; Zhang et al. 2010;
Martínez et al. 2010; Lan
et al. 2012; Liu et al.
2014; Petritan et al. 2014;
Velázquez et al. 2014;
Petritan et al. 2015; Wang
et al. 2015 ; Jácome-
Flores et al. 2016;
Nguyen et al. 2016; Janík
et al. 2016; Fibich et al.
2016; Gradel et al. 2017;
Wang et al. 2017;
Erfanifard and Stereńczak
2017; Collet et al. 2017;
Ghalandarayeshi et al.
2017; Ziegler et al. 2017;
Du et al. 2017; Omelko
et al. 2018; Kuehne et al.
2018 ; Das Gupta and
Pinno 2018; Carrer et al.
2018; Yuan et al. 2018;
Muvengwi et al. 2018;
Yang et al. 2018; Szmyt
and Tarasiuk 2018;
Erfanifard et al. 2018;
Nguyen et al. 2018b;
Yılmaz et al. 2019;
Erfanifard et al. 2019; Li
et al. 2020a; Ben-Said
et al. 2020; Garbarino
et al. 2020; Li et al.
2020b; Wang et al. 2020a;
Meyer et al. 2020

Ripley’s L-
function
L(r) (Ripley
1977; Besag
1977)

L(r) = 0 Points of the pattern
are randomly
distributed

L(r) > 0 Points of the pattern
are aggregated

L(r) < 0 Points of the pattern
are segregated

Kenkel 1988; Ward et al.,
1996; Haase et al. 1996;
Haase et al. 1997;
Pélissier 1998; Eccles
et al. 1999; Chen and
Bradshaw 1999; Mast and
Veblen 1999; Grau 2000;
He and Duncan 2000;
Mori and Takeda 2004;
North et al. 2004; Motta
and Lingua 2005; Motta
and Edouard 2005;
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Table 1 Second-order summary statistics commonly used in spatial point-pattern analysis. In the univariate analysis, only one
pattern is involved (e.g. one species, one size or age class, one life stage, etc.), while in the bivariate version two patterns (1 and 2)
are investigated (e.g. two different species, two size classes, two life stages, etc.). For the mark correlation analysis, the most studied
mark is by far tree diameter. In the case of random labelling analysis, the marks usually consist of tree status (e.g. dead vs living). For
all analysis types, positive, negative, or absence of departure from the null model simulation envelopes occurs at a given scale r
(Continued)

Statistic
function

No departure from the null
model

Positive departure Negative departure Examples of
application

Value Interpretation Value Interpretation Value Interpretation

Suzuki et al. 2005;
Fajardo et al. 2006; Gray
and He 2009; Szmyt
2010; Nanami et al. 2011;
Iszkuło et al. 2012; Zhang
et al. 2013; Navarro-
Cerrillo et al. 2013; Ebert
et al. 2015; Wehenkel
et al. 2015; Jácome-Flores
et al. 2016; Jia et al. 2016;
Zhang et al. 2016; Owen
et al. 2017; Gradel et al.
2017; Zheng et al. 2017;
Nguyen et al. 2018b;
Omelko et al. 2018;
Muvengwi et al. 2018;
Vandekerkhove et al.
2018; Kazempour Larsary
et al. 2018; Lv et al. 2019;
Baran et al. 2020; Meyer
et al. 2020

K-2
function
K2-(r)
(Schiffers
et al. 2008)

K2(r) =
0

Points of the pattern
are random

K2(r) >
0

Points of the pattern
are segregated

K2(r) <
0

Points of the pattern
are aggregated

Omelko et al. 2018

Unmarked bivariate analysis

O-ring
statistic
O12(r)
(Wiegand
et al. 1999;
Wiegand
and
Moloney
2004)

O12(r) =
λ2

Patterns 1 and 2 are
independent

O12(r) >
λ2

Patterns 1 and 2 are
attracted

O12(r) <
λ2

Patterns 1 and 2 are
segregated

Riginos et al. 2005; Hao
et al. 2007; De Luis et al.
2008; Batllori et al. 2010;
Navarro-Cerrillo et al.
2013, Kang et al. 2014;
Cordero et al. 2016; Hu
et al. 2017; Miao et al.
2018; Bassil et al. 2018;
Zhang et al. 2020

Pair
correlation
function
g12(r)
(Stoyan and
Stoyan
1994)

g12(r) =
1

Patterns 1 and 2 are
independent

g12(r) >
1

Patterns 1 and 2 are
attracted

g12(r) <
1

Patterns 1 and 2 are
segregated

Pélissier 1998; Wiegand
et al. 2007a; LeMay et al.
2009; Comas et al. 2009;
Wang et al. 2010a; Zhang
et al. 2010; Martínez et al.
2010; Lan et al. 2012; Liu
et al. 2014; Petritan et al.
2014, 2015; Wang et al.
2015; Ghalandarayeshi
et al. 2017; Collet et al.
2017; Erfanifard and
Stereńczak 2017; García-
Cervigón et al. 2017;
Ziegler et al. 2017;
Ramage et al. 2017; Das
Gupta and Pinno 2018;
Yang et al. 2018; Szmyt
and Tarasiuk 2018;
Erfanifard et al. 2018;
Yılmaz et al. 2019;
Erfanifard et al. 2019; Li
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Table 1 Second-order summary statistics commonly used in spatial point-pattern analysis. In the univariate analysis, only one
pattern is involved (e.g. one species, one size or age class, one life stage, etc.), while in the bivariate version two patterns (1 and 2)
are investigated (e.g. two different species, two size classes, two life stages, etc.). For the mark correlation analysis, the most studied
mark is by far tree diameter. In the case of random labelling analysis, the marks usually consist of tree status (e.g. dead vs living). For
all analysis types, positive, negative, or absence of departure from the null model simulation envelopes occurs at a given scale r
(Continued)

Statistic
function

No departure from the null
model

Positive departure Negative departure Examples of
application

Value Interpretation Value Interpretation Value Interpretation

et al. 2020a; Ben-Said
et al. 2020; Ribeiro et al.
2021

Pair
correlation
function
g21(r)
(Stoyan and
Stoyan
1994)

g21(r) =
1

Patterns 1 and 2 are
independent

g21(r) >
1

Patterns 1 and 2 are
attracted

g21(r) <
1

Patterns 1 and 2 are
segregated

Nguyen et al. 2016; Li
et al. 2020a

Ripley’s L-
function
L12(r)
(Lotwick
and
Silverman
1982)

L12(r) =
1

Patterns 1 and 2 are
independent

L12(r) >
1

Patterns 1 and 2 are
attracted

L12(r) <
1

Patterns 1 and 2 are
segregated

Kenkel 1988; Ward et al.
1996; Haase et al. 1996;
Haase et al. 1997;
Pélissier 1998; Eccles
et al. 1999; Chen and
Bradshaw 1999; Mast and
Veblen 1999; Grau 2000;
He and Duncan 2000;
North et al. 2004 ; Motta
and Edouard 2005; Motta
and Lingua 2005; Suzuki
et al. 2005; Fajardo et al.
2006; Nanami et al. 2011;
Iszkuło et al. 2012;
Navarro-cerrillo et al.
2013; Wehenkel et al.
2015; Jia et al. 2016;
Zhang et al. 2016; Owen
et al. 2017; Zheng et al.
2017; Lv et al. 2019

Quantitatively univariate marked analysis

Mark
correlation
function
km1m1(r)
(Stoyan and
Stoyan
1994)

km1m1(r)
= 1

The marks of points are
similar to the mean
marks (of the study
plot)

km1m1(r)
> 1

The marks of point that
had another point
nearby tend to be
larger than the mean
marks, i.e. positive
correlation or mutual
stimulation

km1m1(r)
< 1

The marks of point
that had another point
nearby tend to be
smaller than the mean
marks, i.e. negative
correlation or mutual
inhibition

Getzin et al. 2008a;
Suzuki et al. 2008; Gray
and He 2009; Zhang
et al. 2013; Fibich et al.
2016; Erfanifard and
Stereńczak 2017; Ziegler
et al. 2017; Das Gupta
and Pinno 2018;
Muvengwi et al. 2018;
Erfanifard et al. 2018;
Yılmaz et al. 2019;
Erfanifard et al. 2019;
Ben-Said et al. 2020; Li
et al. 2020b

r-mark
correlation
function
km1. (r)
(Illian et al.
2008)

km1. (r)
= 1

The marks of
neighbouring points
did not show any
spatial correlation

km1. (r)
> 1

The marks of a focal
point that has another
neighbour are larger
than the mean mark,
i.e. positive effect of
nearby points on the
marks

km1. (r)
< 1

The marks of a focal
point that has another
neighbour are smaller
than the mean mark,
i.e. negative effect of
nearby points on the
marks

Raventós et al. 2011;
Fedriani et al. 2015

r-mark
correlation
function
k.m1(r) (Illian

k.m1(r) =
1

The marks of points did
not show any spatial
correlation

k.m1(r) >
1

The marks of points are
larger than the mean if
they are nearby to a
focal point

k.m1(r) <
1

The marks of points
are smaller than the
mean if they are
nearby to a focal point

Raventós et al. 2011;
Ziegler et al. 2017
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Table 1 Second-order summary statistics commonly used in spatial point-pattern analysis. In the univariate analysis, only one
pattern is involved (e.g. one species, one size or age class, one life stage, etc.), while in the bivariate version two patterns (1 and 2)
are investigated (e.g. two different species, two size classes, two life stages, etc.). For the mark correlation analysis, the most studied
mark is by far tree diameter. In the case of random labelling analysis, the marks usually consist of tree status (e.g. dead vs living). For
all analysis types, positive, negative, or absence of departure from the null model simulation envelopes occurs at a given scale r
(Continued)

Statistic
function

No departure from the null
model

Positive departure Negative departure Examples of
application

Value Interpretation Value Interpretation Value Interpretation

et al. 2008)

Schlather’s I
function
Imm(r)
(Schlather
et al. 2004)

Imm(r) =
1

Absence of correlation
between point marks

Imm(r) >
1

High correlation
between point marks

Imm(r) <
1

Low correlation
between point marks

Fedriani et al. 2015;
Jácome-Flores et al. 2016

Mark
variogram
γm(r) (Illian
et al. 2008)

γm(r) =
1

No correlation between
point marks

γm(r) <
1

The pairs of points
tend to have similar
marks (positive
correlation)

γm(r) >
1

The pairs of points
tend to have dissimilar
marks, i.e. large marks
are close to small ones
(negative correlation)

Suzuki et al. 2008; Fibich
et al. 2016;
Ghalandarayeshi et al.
2017; Erfanifard and
Stereńczak 2017; Kuehne
et al. 2018; Erfanifard
et al. 2018; Li et al. 2020b

Quantitatively bivariate marked analysis

Mark
correlation
function
km1m2(r)
(Stoyan and
Stoyan
1994)

km1m2(r)
= 1

The marks of two
pattern points are not
spatially correlated

km1m2(r)
> 1

The marks of the two
pattern points tend to
have larger marks than
the mean mark
(positive correlation)

km1m2(r)
< 1

The marks of the two
pattern points tend to
have smaller marks
than the mean mark
(negative correlation)

Das Gupta and Pinno
2018; Raventós et al.
2011; Erfanifard and
Stereńczak 2017;
Erfanifard et al. 2019

r-mark
correlation
function
k.m2(r) (Illian
et al. 2008)

k.m2(r) =
1

Marks of points do not
show a spatial pattern

k.m2(r) >
1

The mark of a pattern
2 point is larger than
the mean mark if it is
nearby to a point of
the focal pattern 1
(positive correlation)

k.m1(r) <
1

The mark of pattern 2
points is smaller than
the mean mark if it is
nearby to a point of
the focal pattern 1
(negative correlation)

Raventós et al. 2011;
Jácome-Flores et al. 2016;
Ziegler et al. 2017

r-mark
correlation
function km.

(r) (Illian
et al. 2008)

km. (r) =
1

There is no effect of a
pattern 2 point on the
mark of the pattern 1
point.

km. (r) >
1

The mean mark of
focal points of pattern
1 that have a pattern 2
neighbour is larger
than the plot mean
mark (positive
correlation)

km. (r) <
1

The mean mark of
focal points of pattern
1 that have a pattern 2
neighbour is smaller
than the plot mean
mark (negative
correlation)

Ribeiro et al. 2021

Mark
variogram
γm1m2(r)
(Illian et al.
2008)

γm1m2(r)
= 1

The distribution of
point patterns 1 and 2
is independent from
their marks

γm1m2(r)
< 1

The points of patterns
1 and 2 tend to have
similar marks (positive
correlation)

γm1m2(r)
> 1

The points of patterns
1 and 2 tend to have
dissimilar marks
(negative correlation)

Erfanifard and Stereńczak
2017

Qualitatively univariate marked analysis

g11(r)
(Stoyan and
Stoyan
1994)

g11(r) =
1

Points of pattern 1 are
randomly distributed

g11(r) >
1

Points of pattern 1 are
aggregated

g11(r) <
1

Points of pattern 1 are
dispersed

Raventós et al. 2010,
2011; Velázquez et al.
2014; Petritan et al. 2015;
Szmyt and Tarasiuk 2018;
Abellanas and Pérez-
Moreno 2018; Miao et al.
2018; Szmyt and Tarasiuk
2018

g22(r)
(Stoyan and
Stoyan
1994)

g22(r) =
1

Points of pattern 2 are
randomly distributed

g22(r) >
1

Points of pattern 2 are
aggregated

g22(r) <
1

Points of pattern 2 are
dispersed

Velázquez et al. 2014;
Miao et al. 2018

Mark
connection

p11(r) =
p1p1

Points of pattern 1 are
randomly distributed

p11(r) >
p1p1

Points of pattern 1 are
clustered, i.e. two

p11(r) <
p1p1

Points of pattern 1 are
segregated, i.e. two

Raventós et al. 2011;
Jácome-Flores et al. 2016
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Table 1 Second-order summary statistics commonly used in spatial point-pattern analysis. In the univariate analysis, only one
pattern is involved (e.g. one species, one size or age class, one life stage, etc.), while in the bivariate version two patterns (1 and 2)
are investigated (e.g. two different species, two size classes, two life stages, etc.). For the mark correlation analysis, the most studied
mark is by far tree diameter. In the case of random labelling analysis, the marks usually consist of tree status (e.g. dead vs living). For
all analysis types, positive, negative, or absence of departure from the null model simulation envelopes occurs at a given scale r
(Continued)

Statistic
function

No departure from the null
model

Positive departure Negative departure Examples of
application

Value Interpretation Value Interpretation Value Interpretation

function
p11(r)
(Gavrikov
and Stoyan
1995; Illian
et al. 2008)

points taken randomly
have a higher
probability of being
both of pattern 1

points taken randomly
have a lower
probability of being
both of pattern 1

Mark
connection
function
p22(r)
(Gavrikov
and Stoyan
1995; Illian
et al. 2008)

P22(r) =
p2p2

Points of pattern 2 are
randomly distributed

P22(r) >
p2p2

Points of pattern 2 are
aggregated, i.e. two
points taken randomly
have a higher
probability of being
both of pattern 2

p22(r) <
p2p2

Points of pattern 2 are
dispersed, i.e. two
points taken randomly
have a lower
probability of being
both of pattern 2

Raventós et al. 2011

Qualitatively bivariate marked analysis

g12(r)
(Stoyan and
Stoyan
1994)

g12(r) =
1

Patterns 1 and 2 are
independent

g12(r) >
1

Patterns 1 and 2 are
attracted

g12(r) <
1

Patterns 1 and 2 are
segregated

Raventós et al. 2010,
2011; Petritan et al. 2014,
2015; Velázquez et al.
2014; Szmyt and Tarasiuk
2018; Abellanas and
Pérez-Moreno 2018; Yuan
et al. 2018; Miao et al.
2018; Szmyt and Tarasiuk
2018

g21(r)
(Stoyan and
Stoyan
1994)

g21(r) =
1

Patterns 1 and 2 are
independent

g21(r) >
1

Patterns 1 and 2 are
attracted

g21(r) <
1

Patterns 1 and 2 are
segregated

Yuan et al. 2018

g1,1+2 -
g2,1+2
(Raventós
et al. 2010)

g1,1+2 −
g2,1+2 =
0 or
g1,1+2 =
g2,1+2

Density of patterns 1
and 2 around pattern 1
is similar to that around
pattern 2, i.e. absence
of density-dependent
effect

g1,1+2 −
g2,1+2 >
0

Pattern 1 occurs
preferably in areas with
high density of
patterns 1 and 2, i.e.
negative density-
dependence (density-
dependent mortality)

g1,1+2 −
g2,1+2 <
0

Pattern 1 occurs
preferably in areas with
low density of patterns
1 and 2, i.e. positive
density dependence
(density-dependent
survival)

Raventós et al. 2010,
2011; Velázquez et al.
2014; Jácome-Flores et al.
2016; Szmyt and Tarasiuk
2018; Miao et al. 2018

g12(r) –
g11(r)
(Getzin
et al. 2006)

g12(r) −
g11(r) =
0

Pattern 1 is surrounded
by pattern 2 in the
same way as pattern 1
surrounds pattern 1, i.e.
patterns 1 and 2 have
similar spatial
distributions

g12(r) −
g11(r) >
0

Pattern 2 is more
frequent around
pattern 1 than pattern
1 around pattern 1, i.e.
pattern 1 is negatively
correlated.
Pattern 2 show
additional aggregation
that is independent
from pattern 1

g12(r) −
g11(r) <
0

Pattern 1 are more
frequent around
pattern 1 than pattern
2 around pattern 1, i.e.
positive correlation for
pattern 1

Getzin et al. 2008b;
Velázquez et al. 2014; Das
Gupta and Pinno 2018;
Yuan et al. 2018

g21(r) –
g22(r)
(Getzin
et al. 2006)

g21(r) −
g22(r) =
0

Pattern 2 are
surrounded by pattern
1 in the same way as
pattern 2 surrounds
pattern 2, i.e. patterns 1
and 2 have similar
spatial distributions

g21(r) −
g22(r) >
0

Pattern 1 are relatively
more frequent around
pattern 2 than pattern
2 around pattern 2, i.e.
pattern 1 is negatively
correlated

g21(r) −
g22(r) <
0

Pattern 1 are relatively
more frequent around
pattern 2 than pattern
2 around pattern 2, i.e.
positive correlation for
pattern 1
There is additional
aggregation of pattern
2 independently of
pattern 1

Getzin et al. 2006, 2008b;
Velázquez et al. 2014; Das
Gupta and Pinno 2018;
Yuan et al. 2018
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Table 1 Second-order summary statistics commonly used in spatial point-pattern analysis. In the univariate analysis, only one
pattern is involved (e.g. one species, one size or age class, one life stage, etc.), while in the bivariate version two patterns (1 and 2)
are investigated (e.g. two different species, two size classes, two life stages, etc.). For the mark correlation analysis, the most studied
mark is by far tree diameter. In the case of random labelling analysis, the marks usually consist of tree status (e.g. dead vs living). For
all analysis types, positive, negative, or absence of departure from the null model simulation envelopes occurs at a given scale r
(Continued)

Statistic
function

No departure from the null
model

Positive departure Negative departure Examples of
application

Value Interpretation Value Interpretation Value Interpretation

g11(r) −
g22(r)
(Wiegand
and
Moloney
2014)

g11(r) −
g22(r) =
0

Patterns 1 and 2 are
similar

g11(r) −
g22(r) >
0

Pattern 1 are more
clustered than pattern
2

g11(r) −
g22(r) <
0

Pattern 2 are more
clustered than pattern
1

Omelko et al. 2018; Li
et al. 2020b

Mark
connection
function
p12(r)
(Gavrikov
and Stoyan
1995; Illian
et al. 2008)

p12(r) =
p1 p2

No association of
pattern 1 to pattern 2

p12(r) >
p1 p2

Patterns 1 and 2 are
attracted, i.e. pattern 1
points tend to appear
in pairs with pattern 2

p12(r) <
p1 p2

Patterns 1 and 2 are
segregated, i.e. pattern
1 points tend to
appear segregated
from pattern 2 points

Getzin et al. 2008b;
Raventós et al. 2011;
Jácome-Flores et al. 2016;
Yılmaz et al. 2019; Ben-
Said et al. 2020

λ: intensity of the pattern, m1 and m2: marks of two neighbouring points of one pattern (univariate mode) or two different patterns (bivariate mode). Note that
the values of the p(r) vary between 0 and 1, it equals 1 if the first point is of pattern 1 and the second of pattern 2, and zero otherwise

Table 2 Examples of the minimum number of individuals (trees) and software used in spatial point-pattern analyses. Most studies
used a very low number of trees in SPPA which does not correspond to the recommendations provided by the main textbooks
related to SPPA

Summary statistics Number
of
individuals

Software References

K(r) and Moran’s
correlograms
L(r) and L12(r)
g(r) and g12(r)

> 15 Spatial Analysis (Duncan 1995)
SPPA (Haase 2001)
Programita (Wiegand and Moloney 2004)

Camarero et al. 2000
Lingua et al. 2008
Carrer et al. 2013

L(r) and L12(r) ≥ 26 ADE-4 (Thioulouse et al. 1997) Camarero et al. 2005

kmm(r) ≥ 100 R (R Development Core Team) Getzin et al. 2008a

L(r) ≥ 60 SPPA (Haase 2004) Szmyt 2010

g12(r)
g(r)

≥ 25 Programita (Wiegand and Moloney 2004)
R (R Development Core Team)

Petritan et al. 2015
Du et al. 2017

g(r) and g12(r) ≥ 10 R (R Development Core Team) Janík et al. 2016

O12(r) ≥ 4 Programita (Wiegand and Moloney 2004) Cordero et al. 2016

L12(r)
L(r) and L12(r)
g(r), kmm(r) and γ(r)
g(r) and g12(r)

≥ 20 SPPA (Haase 2002)
Not specified
R (R Development Core Team)
Programita (Wiegand and Moloney 2004)

Fajardo et al. 2006
Zenner and Peck 2009
Fibich et al. 2016
Ziegler et al. 2017

L12(r) and g12(r) > 30 Programita (Wiegand and Moloney 2004) Muvengwi et al. 2018

g(r), g12(r) and g21(r)
g(r) and g12(r)

≥ 30 Programita (Wiegand and Moloney 2014)
R (R Development Core Team)

Nguyen et al. 2016
Li et al. 2020a

g(r)
g(r), kmm(r) and γ(r)

≥ 40 Programita (Wiegand and Moloney 2004, 2014) and R (R Development
Core Team)
R (R Development Core Team)

Yao et al. 2016; Das Gupta and
Pinno 2018
Li et al. 2020b

g(r) ≥ 68 R (R Development Core Team) Carrer et al. 2018

g12(r), km. (r) ≥ 50 Programita (Wiegand and Moloney 2014) Ribeiro et al. 2021

K(r) univariate Ripley’s K-function, L(r) univariate Ripley’s L-function, g(r) univariate pair correlation function, kmm(r) mark-correlation function, L12(r) bivariate Ripley’s
L-function, g12(r) bivariate pair correlation function, O12(r) bivariate O-ring statistic, γ(r) mark variogram, km. (r) bivariate r-mark correlation function
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causing a stronger positive autocorrelation than occurs
in reality, called ‘‘virtual aggregation’’ (Wiegand and
Moloney 2004). To deal with this problem, Schiffers
et al. (2008) derived a new test statistic, termed K2-func-
tion, as an extension of existing summary statistics but it
is very little used (Table 1). Besides, K- and g-functions
remain key tools in analysing point patterns and the
most used either in uni- or bivariate analysis (Velázquez
et al. 2016; Table 1). Furthermore, the use of numerous
test functions simultaneously allows reducing a lack of
detection of an interaction between points and hence
understanding underlying processes (Raventós et al.
2010). Many other summary statistics exist (Wiegand
et al. 2013; Wiegand and Moloney 2014) but I could not
find their application in ecology (e.g. the proportion E(r)
of points with no neighbour at distance r, the mean dis-
tance nn(k) to the kth neighbours). Refined nearest
neighbour analysis (i.e. Dk(r) and its related function
Hs(r), Diggle 2003; Illian et al. 2008) are less used by
ecologists (Velázquez et al. 2016, Table 1). Besides, the
reader is referred to Barot et al. (1999), Jácome-Flores
et al. (2016) and Omelko et al. (2018) for Hs(r) and
Dk(r), and to Kenkel (1988), García-Cervigón et al.
(2017) for Dk

12(r), and Li et al. (2020b) for Dk(r).

Marked point-pattern analysis
In addition to point pattern locations, other information
can be integrated into the analysis, usually called
“marks” (Wiegand and Moloney 2004) such as species
name, plant size, life stage, plant status, etc. The related
analysis is the so-called marked point-pattern analysis
(Illian et al. 2008; Wiegand and Moloney 2014; MA
hereafter). This analysis is noticeably advantageous in
clarifying the interactions among tree species and the as-
sociation between tree size variation and spatial scale
(Hui et al. 2019). It is divided into two types: (1) quanti-
tative marked analysis (QNA hereafter) which involves
quantitative properties of plant (e.g. height, DBH, etc.)
and (2) qualitative marked analysis (QLA hereafter)
which implicates categorical characteristics such as spe-
cies identity or their status (living vs. dead). Table S1
(See Additional file 1) shows the most marks used in the
literature. Marked analysis is an important tool that aids
in investigating distance- and density-dependent effects
on trees (see below). Besides, in their evaluation of the
state of SPPA in ecology, Velázquez et al. (2016) found
that MA is rarely used by ecologists compared to un-
marked analysis (see also Table 1). Furthermore, the au-
thors found that QLA is more used than QNA. In QNA,
the mark correlation function commonly symbolized by
kmm(r) is by far the most used by ecologists (Table 1)
and the DBH is the most used mark (Table S1), while
partial pair-correlation functions gij(r) (Stoyan and Sto-
yan 1994) are commonly used in QLA. For each analysis

type, there is a set of statistical functions which allow
testing different hypotheses (see Wiegand and Moloney
2014; Table 1). In literature, QNA is commonly desig-
nated as mark correlation analysis since it is usually car-
ried out using kmm(r). Similarly, QLA is commonly
referred to as random labelling analysis given that this is
the most frequently used null model in this analysis type.
Like the unmarked analysis, MA can be applied to uni-,
bi-, or multivariate data.

Edge effect
The edge effect represents a frequent problem in SPPA
(Wiegand and Moloney 2004). The issue is that neigh-
bourhood interactions are not correctly considered at
the sample plot boundary when potential neighbours lie
outside the plot (Pommerening 2002). Usually, data re-
lated to the pattern falling outside the observation
window are not available making impossible the deter-
mination of plant neighbours located close to the border
(Law et al. 2009). Numerous basic references on SPPA
explain all aspects of edge correction in detail. Thus,
readers who desire more technical information are in-
vited to consult these references (e.g. Wiegand and
Moloney 2004, 2014; Law et al. 2009). Recently, different
types of edge correction methods are included in statis-
tical software (Velázquez et al. 2016) such as the Progra-
mita software (Wiegand and Moloney 2014).

Null models
The selection of the suitable null model depending on the
scientific question in hand is a crucial step for an appropri-
ate interpretation of the results (Wiegand and Moloney;
2004; Carrer et al. 2018). There is a set of null models
which differ from one analysis to another (uni- or bivariate,
marked or not) and allow testing different hypotheses
(Table S2, Additional file 1). In the unmarked univariate
analysis, the complete spatial randomness (CSR) null model
is by far the most used by ecologists (Velázquez et al. 2016)
and it can be shown as a homogeneous Poisson process (a
reference distribution) which assumes that the pattern in-
tensity λ is constant in the study area (Wiegand and Molo-
ney 2004, 2014). If the pattern is not homogeneous, the
dependence revealed by K(r) may be more caused by first-
order heterogeneity than by interaction between points
(Wiegand and Moloney 2004). For this purpose, the hetero-
geneous Poisson process (HP) null model is more appropri-
ate since it takes into account environmental heterogeneity
effects and allows disentangling second-order effects and
thus capturing small-scale spatial structures (Wiegand and
Moloney 2004; Carrer et al. 2018).
For the bivariate case, the most commonly used null

models are (1) the independence null model (Goreaud
and Pélissier 2003, also called random superposition by
Illian et al. 2008) assumes that the two point patterns
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were created by two independent processes (Wiegand
and Moloney 2004). It is largely used to investigate the
relationship between two different species, size classes,
or life stages. (2) The antecedent condition (Wiegand
and Moloney 2004) is usually used in the case of adult-
young relationships where the locations of pattern 1
(i.e. adults) is kept fixed while randomizing only pattern
2 (i.e. young) following a specific univariate null model
(Wiegand 2004). The toroidal shift null model (Dale
1999) can also be used to test the independence of the
two point patterns, it is applied by keeping pattern 1
unchanged and shifting the whole of pattern 2 by deal-
ing with the study region (which had to be rectangular)
as a torus (Wiegand 2004). If other pattern properties
such as qualitative marks (also called labels) are inte-
grated into the analysis, random labelling (Goreaud and
Pélissier 2003; Tables 1 and S2) is the suitable null
model (Wiegand and Moloney 2014). It assumes that
the pattern points are generated by one process; then, a
succeeding process created the marks which are ran-
domly assigned to the points; thus, the null model fo-
cuses on the process responsible for assigning labels to
points (Wiegand and Moloney 2004, 2014). It is mostly
used for assessing density-dependent mortality. A wide
variety of qualitative marks are used particularly tree
status (living vs dead trees, see Table S2). Several test
functions allow testing for random labelling hypothesis
and can be used either for uni- or bivariate analysis
(Wiegand and Moloney 2014; Table 1). When consider-
ing quantitative marks, the independent marking re-
mains the suitable null model. Like random labelling, it
keeps the location of points fixed and randomly shuffles
the marks between all points; this allows eliminating
potential spatial structure in the studied marks (Wie-
gand and Moloney 2014). Similarly, this null model can
be used in both uni- and bivariate cases for different
marks (Wiegand and Moloney 2014; Table S2) whose
plant size remains the most used. In the literature,
QNA is usually designated as mark correlation analysis
due to the frequent use of the mark correlation func-
tion kmm(r) although several test functions are available
(Wiegand and Moloney 2014; Table 1). Velázquez et al.
(2016) pointed out that many studies used random la-
belling correctly for QLA, but there were some studies
that confused the null models for independence and
random labelling or even random labelling and inde-
pendent marking. More details can be found in Wie-
gand and Moloney (2004, p. 226–227) for the choice of
suitable null models. It is important to note that there
are other null models which can be used in advanced
analyses to test for more complex hypotheses (see Wie-
gand and Moloney 2004, 2014) such as the Poisson
cluster process (Diggle 1983) and the hard-core process
(Illian et al. 2008).

For all analysis types, the empirical curves of statis-
tical functions are compared to the Monte Carlo en-
velopes generated by multiple simulations of the null
model (Wiegand and Moloney 2004). There is a de-
parture from the null model when the empirical
curves fall outside the simulation envelopes. In order
to test for the significance of this departure, a
goodness-of-fit (GoF) is usually used (Loosmore and
Ford 2006). The use of numerous test statistics simul-
taneously allows reducing a possible lack of detection
of a departure from the null model and thus improv-
ing the understanding of underlying processes
(Raventós et al. 2010; Wiegand et al. 2013).

Description of SPPA results and their
interpretation
Preliminary considerations about nomenclature
Different spatial patterns can be distinguished (Fig. 2). In
literature, there are multiple synonyms for each spatial
pattern with a certain distinction between those used in
uni- and bivariate analyses. In the univariate case, aggre-
gation, clumping, or clustering is usually devoted to
positive interaction between points. Aggregation denotes
that the pattern points are on average closer together
than expected under the null model (Wiegand and
Moloney 2014). Contrarily, segregation, uniformity, re-
gularity, or hyperdispersion commonly describes nega-
tive interaction. Segregation designates that the points of
the pattern are on average further apart than expected
(Wiegand and Moloney 2014). Finally, the random pat-
tern reflects the absence of interaction between points.
In the case of bivariate analysis which involves two dif-
ferent point patterns, attraction (positive interaction), re-
pulsion (negative interaction), or independence (absence
of interaction) is commonly used. Similarly, attraction
refers to a tendency for points of two different patterns
to be closer than expected under a null hypothesis,
whereas repulsion denotes a tendency for points to be
farther apart than expected (Peterson and Squiers 1995).
In fact, there is no interruption between terminologies
used for uni- and bivariate analyses but some terms are
more appropriate in some cases and not in others. For
example, segregation is usually used for designating
spatial separation between points of the same pattern in-
stead of repulsion which is more suitable for two differ-
ent patterns. However, other criteria are sometimes
considered; for example, Szmyt and Tarasiuk (2018) dis-
tinguished between the terms of segregation and repul-
sion based on scale; while the first term is used to
describe interaction at a small scale, the latter is defined
for large scale. Additionally, some authors used unclear
terminologies such as Barot et al. (1999) who used
“spatial association” to describe positive interaction be-
tween two pattern types. Zhang et al. (2013) used the
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terms aggregation, regularity, and randomness for
marked analysis which do not reflect the spatial correl-
ation of tree sizes. Suzuki et al. (2005) used the expres-
sion “complete spatial randomness” as a synonym of
“complete spatial independence” in the univariate ana-
lysis. Li et al. (2020b) used also similar terms (i.e. aggre-
gation, regularity, and randomness) in either uni- or
bivariate analysis. Besides, in literature, spatial pattern of
points is commonly designated as spatial structure,
spatial distribution, spatial association, or interaction.
However, Suzuki et al. (2005) used the expression
“spatial pattern” and “spatial association” for the uni-
and bivariate analysis, respectively.

Description of SPPA results
Generally, the description of resultant curves is rela-
tively easy. For instance, if the g(r) function values
are lower, higher than, or equal to the confidence en-
velopes, the pattern is designed as regular, aggregated,
or random, respectively (Table 1). The description is
similar for L(r) and O-ring statistics O(r). For kmm(r),
if the curve is lower, higher than, or equal to the
confidence envelopes, there is inhibition, stimulation,
or absence of correlation between point marks, re-
spectively. However, many differences exist from a
function to another (see Table 1).

Result interpretation: pattern-process relationship
Unmarked analysis
Although the interpretation of obtained results may be a
delicate step (Wiegand and Moloney 2004), the observed

pattern may reflect related processes: a negative associ-
ation would indicate competition, while a positive asso-
ciation would be related to facilitation. Numerous
studies explained positive spatial patterns by various
mechanisms particularly seed dispersal characteristics
(De Luis et al. 2008; Martínez et al. 2010; Lan et al.
2012; Liu et al. 2014; Nguyen et al. 2018a) and/or shade
tolerance (Hein et al. 2009; Wang et al. 2010b; Petritan
et al. 2015; Erfanifard and Stereńczak 2017; Table S3,
Additional file 1). Small-scale facilitation between spe-
cies occurring at the same microsites can be due to their
similar growth requirement (Martínez et al. 2010; Ledo
et al. 2011), while Jia et al. (2016) found an opposite
trend as well as Li et al. 2020a) who found that differ-
ences in species morphology and life characteristics re-
duce their direct competition. Many studies found that
aggregation decreases and even disappears with increas-
ing distances, which indicates a dispersal limitation ef-
fect (Nguyen et al. 2016). Seed dispersal mode directly
influences the spatial distribution of tree recruitment
and the spatial relationships with conspecifics (Seidler
and Plotkin 2006). On the other hand, negative associ-
ation between trees can be due to competitive effects.
Intra- or interspecific competition starts instantly after
the stand initiation stage (Yılmaz et al. 2019). Different
growth rhythms of species may lead to interspecific re-
pulsion (Comas et al. 2009). Ledo et al. (2011) reported
that repulsion should be encountered between the young
plants of two co-occurring species if they have dissimilar
modes of seed dispersal, while Yang et al. (2018) pointed
out that repulsion may occur between species which
have similar strategies for resource use. Moreover,

Fig. 2 Different patterns for one type of point (a) and two types of point (b). Randomness, aggregation, and regularity are commonly reserved to
univariate analysis involving one pattern type, while independence, attraction, and repulsion are confined to bivariate mode
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segregation may be due to the occurrence of seed pro-
duction in different years and recruits may establish
where seeds fall on favourable seedbeds (Fajardo et al.
2006). As a result, suitable sites for recruitment in a
given year are mostly taken by only one species (Comas
et al. 2009).
In fact, both facilitative and competitive effects can

succeed during plant life, that is, there is no perpetual
facilitation or competition either at the intra- or inter-
specific level. Species spatial patterns are related to their
biological attributes and intraspecific associations at
small scales change over life stages (Kang et al. 2014). As
the forest grows, competition increases and leads to the
death of weak members and a slight decrease in aggrega-
tion intensity with increasing life stages or tree sizes,
resulting in a random or even uniform spatial distribu-
tion under the self-thinning process (Kenkel 1988; Kang
et al. 2014; Nguyen et al. 2016). Accordingly, several
studies showed a shift in species spatial pattern over life
stages: from aggregation to regularity (Pseudotsuga men-
ziesii var. glauca: He and Duncan 2000, LeMay et al.
2009, Pinus pinea and P. pinaster: Ledo et al. 2014;
Table S3) or from aggregation to randomness (Populus
davidiana and Betula platyphylla: Jia et al. 2016, Quer-
cus spp.: Chai et al. 2016; in several species: Omelko
et al. 2018; Li et al. 2020a; Zhang et al. 2020; Table S3).
Nevertheless, failure to detect a change towards regular-
ity may merely reflect a weak competitive effect which
does not lead to important mortality rate, but rather lead
to a decline in growth (Gray and He 2009). In the case
of plantation, the initial regular distribution pattern
which reflects the initial spacing between planted trees
instead of the interaction between trees (Szmyt 2014; Li
et al. 2020b) could persist after decades due to competi-
tion or shift towards aggregation as a result of natural
regeneration (Li et al. 2020b). Ledo et al. (2014) reported
that facilitation is the key process that dominates in the
early life stage whereas competition becomes more im-
portant in the later stages. Lan et al. (2012) found similar
results and concluded that the intensity of interaction is
a function of species, life stage, and inter-tree distance.
In addition, environmental conditions control species
distribution, According to the stress-gradient hypothesis
(Maestre et al. 2009), facilitation dominates under high-
stress conditions (abiotic or biotic) while competition is
expected to be more intense in low-stress conditions
(see Velázquez et al. 2014, Zheng et al. 2017, Bowman
and Swatling-Holcomb 2017, Wang et al. 2020a). Thus,
interspecific competition and facilitation are incontest-
ably powerful factors in shaping species spatial patterns
(Dale 1999). Many studies which investigate simultan-
eously a set of species found almost positive interactions.
For example, among the 18 species studied by Nguyen
et al. (2016), 16 showed aggregation at different scales

and irrespective of their abundance. Du et al. (2017)
found also that, among 146 species they studied, 145
showed aggregation. The dominance of positive associa-
tions was also reported by Lan et al. (2012) among the
30 species they analysed.
Motta and Lingua (2005) highlighted that aggregation

is by far the natural situation, while a random or regular
structure is related to earlier forest use such as livestock
grazing and plantation. Tree spatial patterns were found
to be strongly affected by thinning modes and harvesting
intensity in planted forests (Li et al. 2020b). Wang et al.
(2020a) found that Stipa grandis individuals were over-
dispersed in the ungrazed community while they were
clustered in the grazed community. Li et al. (2020b)
found that planted tree species had a regular spatial pat-
tern while non-planted trees (i.e. natural regeneration
species) experienced significant intraspecific aggregation.
Baran et al. (2020) found that trees tend to be aggre-
gated in unmanaged forests while they showed random
patterns in managed forests. However, independent pat-
terns were found to be intensely dominant in interspe-
cific interactions in many subtropical and tropical
natural forests (Nguyen et al. 2018a; Li et al. 2020b) sup-
porting the unified neutral theory (Hubbell 2006).
Ecosystems are characterized by spatio-temporal het-

erogeneity (Saunders et al. 2005). Environmental hetero-
geneity was found to play an important role in species
spatial aggregation (Getzin et al. 2006; Nguyen et al.
2016; Du et al. 2017). Indeed, the same species can show
different spatial patterns in different stands. Moreover,
many studies revealed that spatial patterns are also
driven by species-specific traits (Du et al. 2017). It is im-
portant to note that there are sometimes complex struc-
tures which comprise a mixed pattern, i.e. presence of
regularity at a given distance r and aggregation at other
distances (Goreaud 2000).
Although most of the studies examined by Velázquez

et al. (2016) carried out univariate analysis, bivariate (or
multivariate) analysis is more important, since in natural
ecosystems several species coexist and share common
resources. Hence, explaining the coexistence of co-
occurring species is one of the most challenges of plant
ecology and information offered by SPPA can help to
understand species coexistence mechanisms (Jia et al.
2016; Wiegand et al. 2021). Though this question
remains far from being studied enough, several co-
occurring species have been studied and different mech-
anisms were proposed to explain their coexistence (Mori
and Takeda 2004; De Luis et al. 2008; Hein et al. 2009;
Raventós et al. 2010; Wang et al. 2010a, 2010b; Raventós
et al. 2011; Nanami et al. 2011; Iszkuło et al. 2012; Lan
et al. 2012; Liu et al. 2014; Ledo et al. 2014; Petritan
et al. 2015; Erfanifard and Stereńczak 2017; Szmyt and
Tarasiuk 2018; Li et al. 2020a; Table S3) as well as for
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congeneric species (Acer sp.: Zhang et al. 2010, Symplo-
cos sp.: Yang et al. 2018; Quercus sp.: Collet et al. 2017;
Yuan et al. 2018, Myrcia sp.: Ribeiro et al. 2021). Many
theories were proposed to explain species coexistence;
interesting information can be also found in Wilson
(2011).

Marked analysis
Quantitatively marked analysis: distance-dependent effect
Facilitative or competitive effects do not only result in
species spatial aggregation or segregation but also influ-
ence their growth (e.g. height, diameter, etc.). Thus, MA
is an important tool that aids in investigating distance-
dependent effects on tree growth (Fedriani et al. 2015).
In contrast to the unmarked analysis, the terms of
stimulation, inhibition, or independence are used in the
case of positive, negative, or no correlation between tree
marks, respectively. Indeed, positive correlation occurs
at a distance r if the marks tend to have similar magni-
tudes; for example, larger (or smaller) trees are associ-
ated with each other. Negative correlation arises when
neighbouring trees show some form of inhibition, that
is, when a tree found close to a large tree tends to be
small and vice versa (Wiegand and Moloney 2014; Pom-
merening and Särkkä 2013). In other words, if the closer
trees are smaller than the mark average in the plot there
is an inhibition due to competition, while there is stimu-
lation due to facilitation effect if the neighbouring trees
are larger than the mark average (Wiegand and Moloney
2014). Lastly, absence of correlation between tree marks
can be observed in the case of independence.
Two types of inter-tree competition effect can be dis-

tinguished. When small and large trees are clumped (i.e.

dominant and suppressed trees) with or without a high
mortality of small trees compared to large ones, there is
asymmetric or one-sided contest competition (Kenkel
1988; Raventós et al. 2010; Nanami et al. 2011; Fig. 3).
Conversely, if small trees tend to be associated with
small trees (i.e. clumps of suppressed trees), there is
symmetric or two-sided scramble competition (Kenkel
1988; Raventós et al. 2010; Fig. 3). According to Goreaud
(2000), symmetric competition occurs between two trees
i and j when the influence of i on j is similar to that of j
on i, while there is asymmetric competition when the in-
fluence of i on j differs largely from that of j on i.
In addition to natural processes, negative autocorrel-

ation can result from anthropogenic disturbances (e.g.
thinning, Pommerening and Särkkä 2013). In this case,
the mark variogram is considered the suitable test func-
tion in QNA (Pommerening and Särkkä 2013, Table 1).

Qualitatively marked analysis: density-dependent effect
When plant size and/or their density increase, their re-
quirements (e.g. nutrients, light) increase as well, and
competition becomes intense. As a result, the risk of
dying is expected to increase and the resulting death
leads to a temporary reduction in tree density and com-
petition intensity (Pommerening and Sánchez Meador
2018) which stimulates growth and allows again an in-
crease in size (Fig. 4). This process is commonly known
as density-dependent mortality or self-thinning mechan-
ism (Kenkel 1988). In vegetation communities, the self-
thinning process is widely observed in large size classes
but can start in the seedling establishment stage as well
(Moeur 1997). Indeed, conspecific competition may be
responsible for plant death in the recruitment stage

Fig. 3 Illustrations of the correlation between sizes (here DBH) of two neighbouring trees distant by r. In the case of two-sided scramble
competition (a), the inter-tree competition is equal and the two neighbouring tree sizes are reduced, there is mutual inhibition. In the case of
one-sided contest competition (b), one of the two trees is dominant and the other is suppressed due to asymmetric competitive abilities. In the
absence of negative association, the neighbouring trees benefit from being close to each other and exercise facilitation (c) promoting mutual
stimulation of their growth
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(Getzin et al. 2006). Several studies reported the import-
ance of self-thinning in regulating species communities.
It is usually assessed by the comparison between spatial
patterns of pre-mortality (i.e. living and dead individuals)
and post-mortality (i.e. living individuals) (He and Dun-
can 2000; Getzin et al. 2006; Omelko et al. 2018; Miao
et al. 2018) using random labelling analysis. Negative
intra- or interspecific density dependence arises when
higher mortality (or lower survival) of trees is observed
in denser patches of surviving conspecific or heterospe-
cific trees, respectively (He and Duncan 2000). The self-
thinning process can be assessed by analysing spatial
pattern changes over a relatively long time interval (e.g.
Lutz et al. 2014). Moreover, it can be evaluated by the
comparison between size (or age) classes over life stages,
that is, between young and adult spatial patterns. Indeed,
recruits are frequently found to be aggregated at a small
scale and a decrease of clustering degree can be ob-
served with increasing plant size (from young to adult
stage) indicating self-thinning process (Wiegand et al.
2007b) and resulting usually in regular distribution (Yao
et al. 2016; Wang et al. 2017; Lv et al. 2019). However,
the absence of detection of self-thinning may reflect very
weak competition (Nguyen et al. 2016).

Main interactive drivers of plant dynamic
Species spatial arrangement reflects the dynamic of plant
communities (Fig. 5). According to Goreaud (2000), this
dynamic is driven by the interaction between three main
components:
1) Natural processes, such as seed dispersal, recruit-

ment, growth, and mortality, are closely linked to the

two other factors which follow (local environment of
plants and human intervention). Considering natural
processes alone, positive or negative interactions may be
observed (see above).
2) Local environment of plants: here we distinguish

between biotic and abiotic components. The biotic en-
vironment includes all types of intra- and interspecific
relationships between plants. Facilitative and competitive
effects are relevant examples. For instance, larger “nurse
plants” may exhibit an important facilitative effect on
seedlings leading to a positive spatial association (Fa-
jardo et al. 2006). Indeed, recruitment success and early
survival seem to be improved by tree canopy shade at
drier microsites by providing protection against site
stresses (Fajardo et al. 2006; LeMay et al. 2009). Besides,
the interaction between plant-herbivore (García-Cervi-
gón et al. 2017) and plant-pest (Bassil et al. 2018) have
an important effect on species spatial patterns. The abi-
otic component such as soil conditions (Fajardo et al.
2006; Zheng et al. 2017; Das Gupta and Pinno 2018) and
topography (Zhao et al. 2015) are also important in de-
termining species spatial structure. Nevertheless, both
biotic and abiotic effects are synergic and the effect of
one could be increased or attenuated by the other.
3) Human intervention, such as thinning, likely leads

to negative autocorrelation resulting in the association
of small and large trees (Pommerening and Särkkä,
2013). Gradel et al. (2017) studied the effect of thinning
on tree growth and stand structure and found that tree

Fig. 4 The relationships between growth, requirements,
competition, and death in plant communities. When neighbouring
plants grow, their requirements (e.g. light, water, nutrients) increase
which leads to the increase of their competitive interaction resulting
in a rise in mortality rate. The space freed up by individual mortality
contributes to the decrease of competition intensity and stimulation
of plant growth and/or density

Fig. 5 The spatial structure of plant communities reflects its
dynamic which is driven by the synergic effect of local environment,
natural processes, and human operations. Spatial plant distribution
reflects the community dynamic which is continuously modified by
the interaction between natural processes and abiotic and biotic
factors as well as anthropogenic land uses
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spatial pattern was mainly aggregated while became
regular after thinning. They pointed out that before thin-
ning negative interaction had a strong effect on tree
growth while a significant reduction in competition was
detected after thinning which promoted an important
increase in species growth. Several studies also found a
significant effect of anthropogenic land-use changes
(Motta and Edouard 2005) and management practices
(e.g. Motta and Lingua 2005; Bilek et al. 2011; Navarro-
Cerrillo et al. 2013; Ghalandarayeshi et al. 2017) since
the distribution of gaps formed after silviculture man-
agement will influence species recruitment, diversity,
and survival (Ghalandarayeshi et al. 2017). Here, the
gap dynamic should be taken into account when inter-
preting management effects particularly for shade-
intolerant species. For example, Getzin et al. (2006) ob-
served that Douglas fir regeneration depended on the
presence of gaps within conspecifics which allow redu-
cing the self-thinning mechanism. Briefly, a suitable in-
terpretation of observed patterns should (1) take into
account species biology and ecology, (2) consider envir-
onmental conditions, and (3) integrate the maximum
information available on the disturbance or land-use
history of the study site.

Identification of some ambiguities in SPPA
Sample plot size
In forest studies, the problem related to spatial scale
is linked to sampling strategy, especially the size and
number of sample plots (Carrer et al. 2018). In the
literature, it is usually recommended to use a large
plot size when performing SOSS but there is a lack
of consensus about the minimum sample size re-
quired. Large plots are often advised in order to
minimize edge effects (Pommerening and Stoyan
2006; Wiegand et al. 2013) which are relatively
greater in small plots (Wiegand and Moloney 2014).
In a study which aimed at the evaluation of the effect
of plot size and sampling design in SPPA, Carrer
et al. (2018) pointed out that negative effects of small
plots cannot be entirely avoided despite the efficiency
of edge corrections included in recent software
(Velázquez et al. 2016). However, many studies were
carried out in relatively small plots; for instance,
Szmyt (2014) used rectangular plots varying from 0.18
to 0.21 ha in size, Fajardo et al. (2006) established
square plot of approximately 0.11 ha, Bassil et al.
(2018) used square plots of 0.04 ha (400 m2), Yılmaz
et al. (2019) used square plots of 0.01 ha (100 m2),
LeMay et al. (2009) used a plot of 0.05 ha in high-
density stands, and Petritan et al. (2014) used plots of
0.56 ha. Carrer et al. (2018) highlighted that larger
size plots (> 1 ha) allow including a large number of
individuals and obtaining more consistent results,

while the use of one small plot cannot allow detecting
spatial patterns. The authors found that the accuracy
of small plots (0.25 ha) was low and showed less con-
sistent with the reference plot (4 ha). Thus, to analyse
large-scale spatial patterns they suggested the use of
plots larger than 1 ha in high-diversity forests. Never-
theless, in the absence of large plots, it is recom-
mended to combine several small plots and their
accuracy is improved using the HP null model instead
of CSR in order to account for environmental hetero-
geneity and capture small-scale spatial structure (Car-
rer et al. 2018). Hence, small size plots are largely
used in replicated analysis (Riginos et al. 2005; De
Luis et al. 2008; Comas et al. 2009; Raventós et al.,
2011; Petritan et al. 2014, 2015; Erfanifard and Ster-
eńczak 2017; Ziegler et al. 2017; Erfanifard et al.
2019; Ben-Said et al. 2020; Wang et al. 2020a) where
many small plots are sampled over a large study area
then combined in one average function.

Permanent plot scarcity
Most studies conducted SPPA in permanent plots
(Wiegand et al. 2007a; Bilek et al. 2011; Zhao et al.
2015) or constitute an opportunity for the creation of
such plots (Velázquez et al. 2014; Li et al. 2017; Carrer
et al. 2018; Yang et al. 2018; Zhang et al. 2018). Perman-
ent plots are typically large (generally 1 ha and can reach
50 ha) and have the advantage of being continuously
monitored. Furthermore, numerous studies established
large plots (2 ha: Nguyen et al. 2016; 20 to 35 ha: Wang
et al. 2018) for SPPA in spite of being not permanent.
Besides, forest inventories provide a wide range of data
(Wiegand et al. 2013) for large time periods allowing
various analysis types and responding to different re-
search, management, and conservation purposes. How-
ever, many regions of the world do not benefit from
continuous forest inventories, necessary equipment, hu-
man and/or financial resources to establish and monitor
permanent plots. The absence of such plots constitutes a
considerable gap which limits spatial data availability
and thus application of SPPA which is too time consum-
ing and requires hard fieldwork. Actually, the use of
digital photography and geographical information system
(GIS) allows better data collection and analysis of vege-
tation spatial point patterns (Wang et al. 2020a).

Number of pattern points
Despite the availability of rich literature on SPPA and its
applications in the ecology field, the minimum number of
points is not always respected. Pommerening and Stoyan
(2006) recommended the use of at least 100 points, while
Wiegand and Moloney (2014) recommended 50–70
points. However, several studies used a small number of
points (Table 2). This was also mentioned by Velázquez
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et al. (2016) where approximately half of the studies they
analysed performed SPPA with relatively few points (<
100). Cordero et al. (2016) used a very low number of
trees in size-class analyses (e.g. 4 seedlings and 6 saplings).
Wehenkel et al. (2015) used between 11 and 35 trees. It is
important to note that some studies do not mention the
number of trees used in their analyses (e.g. Navarro-
Cerrillo et al. 2013; Zheng et al. 2017; Bassil et al. 2018).
When long-term datasets are not available, most studies

divide the total number of the investigated plant into many
successive life stages based on tree size (e.g. diameter,
height), age, or growth form (e.g. overstory, understory…
being themselves based on tree size or age), then compare
spatial distribution between these classes (Li et al. 2020a),
resulting in a further reduction of the total number of
points. In this case, the problem is usually related to the
high occurrence of random (or independent) patterns
which makes it difficult to conclude whether this pattern
reflects a reality or it results from the low number of points.
For instance, Wehenkel et al. (2015) found almost exclu-
sively independence between smaller and larger trees which
was suggested to be related to the lower number of these
classes. Cordero et al. (2016) found similar results. Never-
theless, in other cases, non-random patterns may occur in
spite of using few points. Indeed, Cordero et al. (2016)
found non-random patterns within some tree classes (i.e.
13 adults) while they found random distribution when
using a relatively higher number (e.g. 75 adults). Thus, the
correlation between random patterns and low number of
points is not always obvious. Therefore, Rajala et al. (2019)
found that the power to detect biotic relationships is posi-
tively correlated to species abundance and interaction scale
and its intensity, but it has a negative correlation with in-
equity in species abundances. Wehenkel et al. (2015) rec-
ommended using larger plot sizes (> 0.25 ha) in uneven-
aged and species-rich forests to distinguish less apparent,
but important, interactions between spatial pattern, diver-
sity, and functioning in these ecosystems. However, inde-
pendent associations can result from the cumulative effect
of several and complex processes (Getzin et al. 2014).
The sample size did not necessarily condition the num-

ber of individuals, but this number depends on the forest
under investigation. For example, Ben-Said et al. (2020)
established a plot with 20 m of radius which contained 79
trees, while another plot with only 15 m of radius con-
tained 98 trees. Moreover, Comas et al. (2009) used circu-
lar plots with 20 m of radius that contained approximately
100 trees of pine resulting in plots ranging from 0.04 to
0.16 ha. Thus, to deal with this problem, a combination
between plot size and number of points seems to be a
suitable alternative, that is, the sample size can be condi-
tioned by the number of individuals involved. Despite be-
ing considered a small size sample, plots containing less
than 50 points can be considered the first step especially

in exploratory studies to make preliminary hypotheses for
forests that have not been the subject of previous spatial
pattern studies (Ben-Said et al. 2020), as well as when suf-
ficient equipment and financial or human resources are
lacking. Thus, the choice of a sample size as a function of
the number of individuals involved seems to be a trade-off
between the minimum number required in SPPA and the
difficulty of establishing large plots.

Conclusion
The spatial position of plants represents an interesting
source of information and permits to infer the processes
responsible for plant spatial arrangements. Many re-
searchers developed a range of statistics, known as sum-
mary statistics, which allow characterizing and
interpreting spatial stand structure. The availability of
spatial pattern studies in plant ecology offers a rich basis
to test several hypotheses and theories. Despite the solid
theoretical background of SPPA and the wide related ap-
plications, some aspects of SPPA remain unobvious such
as the minimum number of points and the plot size re-
quired. The correlation between low tree abundance and
random patterns remains controversial. Even in similar
forest communities, inconsistent results have been re-
ported. Indeed, the large variability observed in the sam-
ple size among studies offers more flexibility. In
exploratory studies, small sample sizes can provide a
basis to make preliminary hypotheses on the observed
patterns. On the other hand, in many regions of the
world, the lack (and even the absence) of permanent
plots and/or periodic forest inventories constitute a gap
for conducting consistent monitoring of spatial and tem-
poral evolutions of forest structure. Therefore, more at-
tention should be paid to spatial pattern data especially
for the main forest essences. This data type is also recog-
nized to be important in management purposes.
By its rich literature, this paper offers an important

range of information and can largely aid beginner ecolo-
gists in (1) taking into account some basic requirements
of SPPA, (2) choosing directly scientific studies based on
different SPPA types and related characteristics (uni-/
bi-/multivariate analysis, unmarked/marked analysis, test
functions, types of marks, null models, software, etc.),
and (3) raising more attention to key ambiguities which
are a source of SPPA difficulties which need further
clarifications.
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