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Abstract

Background: Habitat resources occur across the range of spatial scales in the environment. The environmental
resources are characterized by upper and lower limits, which define organisms’ distribution in their communities.
Animals respond to these resources at the optimal spatial scale. Therefore, multi-scale assessments are critical to
identifying the correct spatial scale at which habitat resources are most influential in determining the species-
habitat relationships. This study used a machine learning algorithm random forest (RF), to evaluate the scale-
dependent habitat selection of sloth bears (Melursus ursinus) in and around Bandhavgarh Tiger Reserve, Madhya
Pradesh, India.

Results: We used 155 spatially rarified occurrences out of 248 occurrence records of sloth bears obtained from
camera trap captures (n = 36) and scats located (n = 212) in the field. We calculated focal statistics for 13 habitat
variables across ten spatial scales surrounding each presence-absence record of sloth bears. Large (> 5000 m) and
small (1000–2000 m) spatial scales were the most dominant scales at which sloth bears perceived the habitat
features. Among the habitat covariates, farmlands and degraded forests were the essential patches associated with
sloth bear occurrences, followed by sal and dry deciduous forests. The final habitat suitability model was highly
accurate and had a very low out-of-bag (OOB) error rate. The high accuracy rate was also obtained using alternate
validation matrices.

Conclusions: Human-dominated landscapes are characterized by expanding human populations, changing land-
use patterns, and increasing habitat fragmentation. Farmland and degraded habitats constitute ~ 40% of the
landform in the buffer zone of the reserve. One of the management implications may be identifying the highly
suitable bear habitats in human-modified landscapes and integrating them with the existing conservation
landscapes.

Keywords: Bandhavgarh, Melursus ursinus, Multi-scale, Habitat selection, Random forest, Sloth bear, Species
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Introduction
Sloth bears are endemic to the Indian sub-continent.
About 90% of their current range occurs in India (Dhar-
aiya et al. 2016) from the Western Ghats to the forests
of the Shivalik ranges along the foothills of the Hima-
layas (Yoganand et al. 2006). Despite being a widely dis-
tributed bear species, the sloth bear has a patchy
distribution across 20 states in India. The reduction in
their range is attributed to forest fragmentation, con-
tinuous habitat loss, and human-caused mortalities
(Dharaiya et al. 2016). Though no reliable population es-
timates are available for sloth bears in India, the total oc-
cupied area was earlier estimated at 2,000,000 km2

(Johnsingh 2003; Akhtar et al. 2004). More recently,
Sathyakumar et al. (2012) and Puri et al. (2015) reported
the occupied area for sloth bears in India might be
higher than 400,000 km2. Sloth bears are confined to five
distinct bio-graphical regions in India, namely northern,
north-eastern, central, south-eastern, and south-western
(Garshelis et al. 1999; Johnsingh 2003; Yoganand et al.
2006; Sathyakumar et al. 2012; Dharaiya et al. 2016).
Animals are known to select habitat resources across a

range of spatial scales. Multiple factors drive the species
distribution, with each being most influential at a spe-
cific spatial scale; thus, the apparent habitat-species rela-
tionships may change across spatial scales (Wiens 1989).
The inclusion of scales is vital for understanding the
species-habitat relationships (Schaefer and Messier 1995;
Shirk 2012; Wasserman et al. 2012; Sánchez et al. 2014).
The concept of scale in ecology is believed to be much
older (e.g., see Schneider 2001) and is now recognized as
a central theme in spatial ecology (Schneider 1994;
Schneider et al. 1997; Schneider 1998; Cushman and
McGarigal 2004).
For sloth bears, the habitat selection varies with sea-

sonal food availability at a small spatial scale (Joshi et al.
1995; Akhtar et al. 2004; Yoganand et al. 2006; Rat-
nayeke et al. 2007; Ramesh et al. 2012). In our study
area, insects (ants and termites) form a substantial por-
tion of the sloth bear diet (Rather et al. 2020a). The dis-
tribution of ants and termites that sloth bear feeds on is
also likely to be determined by fine-scale variables. On a
larger scale, the occurrence of the sloth bears will likely
be determined by factors such as forest cover, habitat
connectivity, proximity to the human habitation, and so
on (Puri et al. 2015). Johnson (1980) pointed out that
species depend for their essential life-history functions
and decisions on habitat features across a range of
spatial scales. Often, organisms interact with all struc-
tures in their environment. The environmental resources
are characterized by their upper and lower limits, which
define the distribution and fitness of the organism in
their communities (Mayor et al. 2009). Fitness is greatly
influenced by the scales at which organisms select

habitat resources (Mayor et al. 2009). The optimal scale
for each habitat feature may occur anywhere across the
structured environmental continuum on the landscape
(Boyce et al. 2003; Mayor et al. 2007). For example,
Schaefer and Messier (1995) found habitat selection by
muskoxen (Ovibos moschatus) to be consistent across
scales in a relatively homogenous habitat, and contrast-
ingly habitat selection by elk was found to be scale-
dependent in a more structured landscape of Rocky
Mountains (Boyce et al. 2003). Likewise, predators and
prey species select habitat variables at different spatial
scales (Hostetler and Holling 2000). Some authors
(Fisher et al. 2011) argue that body size alone best ex-
plains the dominant scale of habitat selection among ter-
restrial mammals with a direct relationship between the
body size and extent of scale. Thus, habitat selection
quantified at one scale is often insufficient to predict
habitat selection at another scale (Mayor et al. 2009).
Thus, single-scale habitat selection may fail to identify
the factors determining the species-habitat relationships
correctly and lead to biased inferences. Therefore, multi-
scale assessments are critical to identifying the correct
spatial scale at which habitat resources are most influen-
tial in determining the species-habitat relationships.
To date, no multi-scale habitat assessment of sloth

bears has been attempted in India except a recent na-
tionwide occupancy survey of sloth bears conducted at
two spatial scales (Puri et al. 2015). Habitat features such
as forest cover, terrain heterogeneity, and human popu-
lation density were reported to be influential on a large
scale (Puri et al. 2015). A similar multi-scale distribution
assessment using the random forest algorithm was
attempted for Himalayan brown bears (Ursus arctos isa-
bellinus) across their range in Himalayas (Dar et al.
2021). The study showed that habitat selection in brown
bears was scale-dependent and brown bears perceived
the habitat features across multiple spatial scales. Like-
wise, habitat selection of brown bears in Northwest
Spain was found to be sensitive to the scale at which
habitat variables were evaluated (Sánchez et al. 2014).
In another similar study using resource selection func-
tions (RSFs), the habitat selection by grizzly bears was
also found to be scale-dependent (Ciarniello et al. 2007).
The importance of multi-scale assessment in determin-
ing the species-habitat relationships has been demon-
strated in a wide range of species (e.g., Wan et al. 2017;
Klaassen and Broekhuis 2018; Khosravi et al. 2019;
Atzeni et al. 2020; Rather et al. 2020b, 2020c; Ash et al.
2021; Dar et al. 2021).
The habitat selection studies of sloth bears at fine-

scale have been carried out across many regions of its
range (e.g., Joshi et al. 1995; Akhtar et al. 2004; Yoga-
nand et al. 2006; Ratnayeke et al. 2007; Ramesh et al.
2012). These studies indicate that moist and dry
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deciduous forests, human presence, seasonal availability
of food resources, and termites were critical factors de-
termining the habitat associations of sloth bears. Like-
wise, Das et al. (2014) found that the mean number of
termite mounds and trees positively influenced the sloth
bear occurrence in the Western Ghats.
In this study, we used the random forest algorithm

(Breiman 2001a, 2001b) to determine the habitat selec-
tion of sloth bears at multiple spatial scales in a largely
anthropogenic region. Random forest is an ensemble of
classification and regression trees (CART) based on
bagging, which has generated considerable interest in
the ecological community (Cutler et al. 2007). We
aimed to evaluate the scale at which sloth bears re-
spond to habitat variables. We hypothesized that sloth
bears would respond to the habitat variables at various
scales based on their ecological requirements. In
achieving our objectives, we used random forest (RF), a
highly accurate bagging classification algorithm with a
suite of 13 habitat variables, to build a multi-scale suit-
ability model for sloth bears. RF performs better when
executed as classification rather than regression. Trad-
itionally, logistic regression was the dominant statistical

approach in assessing multi-scale habitat associations
(Hegel et al. 2010; McGarigal et al. 2016). RF is a non-
parametric approach and does not assume independ-
ence. Thus, the inherent spatial bias associated with
habitat selection data does not affect the model predic-
tions significantly. RF produces accurate model predic-
tions without overfitting (Breiman 2001a). RF is a
bootstrap-based machine learning algorithm utilizing
the decision tree-based bagging technique and has been
reported to outperform traditional logistic regression
approaches (Evans et al. 2011; Cushman et al. 2017;
Cushman and Wassermann 2018) and resource selec-
tion function (Manly et al. 1993).

Materials and methods
Study area
The study was conducted in and around the Band-
havgarh Tiger Reserve (BTR), Madhya Pradesh, India
(Fig. 1). The reserve’s core zone includes the Pan-
patha Wildlife Sanctuary (PWS) in the North and
Bandhavgarh National Park (BNP) in the South, with
an area of 716 km2. The surrounding buffer zone has
an area of 820 km2, adding the reserve’s total size to

Fig. 1 Location of the Bandhavgarh Tiger Reserve, Madhya Pradesh, India. Green dots represent the scat locations; solid black dots represent the
camera trap captures of sloth bears, and black triangular marks represent the pseudo-absence records generated in ArcGIS (10.3)
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1536 km2. The reserve is located between 23° 27′
00″ and 23° 59′ 50″ north latitude and 80° 47′ 75″
to 81° 15′ 45″ east longitude in the Umaria, Shahdol,
and Katni districts of Madhya Pradesh, in Central
India. A detailed account of the study area is available
in Rather et al. (2020b). The primary habitat types in
the reserve are sal-dominated forests, sal-mixed forest,
moist and dry deciduous forests, grasslands, riverine
patches across the streams, and bamboo dominant
forest patches across the slopes of the hillocks. The
buffer zone is highly anthropogenic and consists of ~
160 villages. Approximately 40% of the land use cat-
egory within the buffer zone is classified as agricul-
tural fields interspersed with degraded forest patches
(Supplemental Information 1). Fragmented and de-
graded territorial forest divisions further surround the
buffer zone.

Sloth bear occurrence records and pseudo-absences
We used the scat locations of the sloth bears col-
lected in the study area as species occurrence records.
Scats were collected randomly as and when encoun-
tered within the study area between 2016 and 2018.
Due care was observed to collect the scats in all sig-
nificant habitats present within the study area. A de-
tailed description of the sampling approach is
available in Rather et al. (2020a). The additional spe-
cies occurrence records were obtained from camera
trap captures. The camera traps (Cuddeback™, Model
C1) were deployed in 2 × 2 km grids overlaid the en-
tire study area in ArcGIS (10.3). Camera trap sam-
pling was carried out from 2016 to 2017. A total of
25 pair of camera traps was placed systematically
within the buffer zone. Camera traps remained active
24 h a day, except for a few stations where the theft
risk was high. Each camera trap session consisted of
eight consecutive trap days/nights.
The main objective of the camera trap sampling was

to estimate the density of the tiger and leopard within
the study area (Rather et al. 2021). A total effort of 2211
trap nights resulted in 36 photo captures of the sloth
bear. A total of 212 occurrences of the sloth bear were
based on the scat locations, and 36 captures of the sloth
bears were obtained during one year of camera trap
sampling. We implemented spatial filtering using the
SDM toolbox (v2.3) in ArcGIS (10.3) to remove the du-
plicated and aggregated occurrence records. Random
forest is a highly accurate bagging algorithm and is not
affected by model overfitting (Breiman 2001a). Out of
248 occurrence records, we retained a total of 155
spatially rarified occurrences of the sloth bear for further
modeling. Out of 155 rarified occurrences, most of the
records were retained from scats locations (n = 130),

and only 25 presence records were of the camera trap
captures.
The actual species absence records of large animals

are challenging to obtain. Thus, we created the pseudo-
absence records for sloth bears in ArcGIS (10.3) using
the following procedure. We created a circular buffer of
a 500-m radius around each presence records (spatially
rarified) and then generated 550 absence records in the
first step. Any of the pseudo-absence points that oc-
curred within these 500-m radius buffers around the
presence locations were removed, and we considered
only the pseudo-absences that occurred at least at the
distance of 500 m from the presence locations to reduce
spatial dependence. The imbalance between presence-
absence classes has been proven to reduce the power of
ensemble learners (Chawla 2005). Building on Chen
et al. (2004) and Chawla (2005), we further removed the
absence points to obtain an approximately balanced set
of presence and absence records to avoid the problems
arising due to imbalance data (Chawla et al. 2003).
Finally, we retained a total of 155 spatially rarified pres-
ence records and an equal number of pseudo-absence
points.

Predictors of sloth bear distribution
We considered the variables reported to be strong pre-
dictors of sloth bear distribution in the Indian sub-
continent. The variables are based on the previous habi-
tat selection studies of sloth bears (Joshi et al. 1995;
Akhtar et al. 2004; Yoganand et al. 2006; Ratnayeke et al.
2007; Ramesh et al. 2012). Based on these studies, we
limited the number of variables to 13 and did not
consider the commonly used bio-climatic variables. We
included topographic, vegetation (land cover classifica-
tion), and anthropogenic variables in sloth bear habitat
modeling (Table 1). We downloaded the digital elevation
map (DEM) at 90-m resolution from Shuttle Radar Top-
ography Mission (SRTM) elevation database (http://
srtm.cs.cgiar.org). Other topographic features such as
slope, aspect, and terrain ruggedness were derived from
the elevation layer using surface analysis tools in the
Spatial Analyst toolbox in ArcGIS (10.3). The land use
land cover (vegetation layer) was obtained from the In-
dian Institute of Remote Sensing (IIRS, http://iirs.gov.in).
We used the line density tool in ArcGIS (10.3) to calcu-
late the road and river density within the study area’s
spatial extent at 1000 and 2000 m spatial scales. All the
variables were resampled at the spatial resolution of 90
m using the SDM toolbox in ArcGIS (10.3). The choice
of grain size or spatial resolution of variables is usually
based on the data availability (Mayer and Cameron
2003) rather than species’ ecology or the scale of the
study. Bio-climatic variables were not included in the
analysis due to their limited capability and relevance in
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determining the sloth bear distribution in a small study
area.

Multi-scale data processing
We calculated the focal statistics for each variable across
ten spatial scales surrounding each location (presence/
pseudo-absence) using a moving window analysis with a
focal statistic tool in ArcGIS (10.3). At each sloth bear
presence-absence (PA) record, we calculated focal statis-
tics for 13 variables (Table 1) using ten circular buffer
radii. The radii of the circular buffers surrounding each
PA record varied from 1000 m (smallest spatial scale) to
10,000 m (largest spatial scale). The focal statistics’ out-
put was the raster layers of each predictor variable at ten
spatial scales and a .dbf file of extracted raster values
around each PA location of sloth bear (Supplemental In-
formation 2). In doing so, we extracted each of the 13
variables at ten spatial scales. In the next step, we ran a
series of univariate RF models using the package ran-
domForest in R (Liaw and Wiener 2002) for each vari-
able across ten spatial scales (1000–10,000 m). The best
scale was selected based on the lowest out-of-bag (OOB)
error rate (McGarigal et al. 2016).
In univariate RF analysis, we used the PA record of

sloth bear as a dependent variable. We executed the RF
algorithm as classification while using each predictor
variable separately at ten spatial scales calculated in the
first step. This step was repeated 13 times for all vari-
ables to extract them at ten spatial scales. Thus, a total
of 130 univariate RF models were constructed for 13
variables. In the final step, we selected the best scale
having the lowest OOB error rate of each predictor vari-
able among the ten spatial scales.

Since we were working with a relatively small data set,
we used model improvement ratio (MIR) (Murphy et al.
2010) to measure each variable’s relative predictive
strength across ten scales. MIR is used to calculate the
permuted variable importance represented by the mean
decrease in OOB error rates, standardized from zero to
one. The OOB error rates are often used to assess the
predictive performance of RF models. A detailed discus-
sion of OOB error rates can be found in Breiman
(1996a, 1996b). In the next step, we built multivariate
RF models using the sloth bear PA as a function of scale
optimized predictor variables calculated during univari-
ate RF analysis in R (R core team 2019).
We tested mutual correlation among all possible pairs

of predictor variables using the R package rfUtilities (Ev-
ans and Murphy 2018). The highly correlated predictor
variables (r > 0.5) were consequently removed from fur-
ther analysis. To deal with the problems arising from
model overfitting due to the small data set, we used the
MIR technique as a model selection procedure. In the
model selection process using MIR, the variables were
subset using 0.10 increments of MIR values, and all vari-
ables above this threshold were retained for each model
(Murphy et al. 2010). This subset was always performed
on the original model’s variable importance to avoid
overfitting. Comparisons were made between each sub-
set model, and the model with the lowest OOB error
rate and lowest maximum within-class error was se-
lected as the final model (Murphy et al. 2010). In the last
step, the model predictions were created using the ratio
of majority votes to create a probability distribution of
sloth bear.
We also determined the minimum number of trees re-

quired by testing 10,000 bootstrap samples to examine

Table 1 Predictor variables included in the random forests modeling and the scales retained in the univariate scaling step of sloth
bears in Bandhavgarh Tiger Reserve

Variable type Variables Optimal scale (m) Abbreviations

Topographic Elevation 2000 elevation2km

Terrain ruggedness index 6000 rug6km

River density 1000 river1km

Cover NDVI in summer season 5000 ndvisum5km

NDVI in winter season 6000 ndviwin6km

NDVI in wet season 8000 ndviwet8km

Habitat composition Dry deciduous forests 1000 drydec1km

Moist deciduous forests 4000 moistdec4km

Sal-dominated forests 5000 sal5km

Disturbance Degraded habitat patches 8000 degraded8km

Farmland 9000 farmland9km

Road density 1000 road1km

Human settlements 6000 settlement6km
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when OOB error rates ceased to improve. The OOB
error rates stabilized between 1000–1500 trees (Supple-
mental Figure 1), and subsequently, in all our models,
we used 2000 trees.

Model assessment
We assessed model fit by random permutations (n = 99)
and cross-validation by adopting a resampling approach
(Evans and Murphy 2018). For each validation, one tenth
of the data was withheld as a validation set for every per-
mutation. We obtained the following suite of perform-
ance matrices as model fit, specificity (proportion of
observed negatives correctly predicted), sensitivity (pro-
portion of observed positives correctly predicted), area
under curve (AUC), the resource operating characteristic
curve (ROC), Kappa statistics, and true skill statistic
(TSS).

Results
A total of ten spatial scales (1000–10,000 m) for each
predictor variable were chosen for the univariate ana-
lysis. For each predictor variable, the scale selection was
based on the lowest OBB error rate except road and
river density, where only two scales (1000, 2000 m) were
retained for the multivariate model. In the final model,
three scales at a small spatial extent (1000 m), one scale
at intermediate spatial extent (4000 m), and three scales
were selected at the broader spatial extent (> 5000 m)
(Fig. 2).

Multivariate modeling and habitat suitability
We used MIR as an approach of variable selection in the
multivariate RF model. Out of 13 original variables, only

seven variables were retained in the final multivariate
model (Fig. 3).
The RF model predicted 28% of the reserve’s buffer

area to be a suitable habitat for sloth bears, accounting
for 43,669 ha. Suitable areas for sloth bears included sal-
dominated, moist, and dry deciduous forests with water
availability and moderate presence of roads. A substan-
tial suitable area for sloth bears in the buffer zone also
included degraded forest patches and farmlands (mosaic
of natural vegetation and cropland). The highly suitable
habitat for sloth bears was predicted in the Panpatha
wildlife sanctuary in the north, which forms the reserve’s
core zone (Fig. 4). Suitable habitats were also located
along the western part of the reserve in the buffer zone
extending towards the reserve’s southern boundary
(Fig. 4).

Partial dependency plots
Farmlands (mosaic of natural vegetation and crop-
lands) and degraded forest patches represent > 40%
of the total buffer area and, expectedly, were pre-
dicted to be positively associated with sloth bear oc-
currence. Variables considered proxy of anthropogenic
disturbances such as degraded habitats, farmlands,
and road density were positively associated with sloth
bear occurrences (Fig. 5). Variables such as sal forests
and moist and dry deciduous forests had no apparent
positive association with the sloth bear occurrences.
The sloth bear occurrences were predicted at very
low percentages of these available habitat types
(Fig. 6). Moist deciduous forests, in particular, did not
influence the predicted occurrences (Fig. 6).

Fig. 2 Frequency of selected scales (in meters) across all variables for the random forest model
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Model assessment
The model for predicting sloth bear occurrences was
well supported and significant (P < 0.001). The model
performed exceptionally well and had low model OOB
error rates and high AUC, TSS, and Kappa statistic
values (Table 2).

Discussion
Our results are consistent with similar studies arguing
that habitat selection measured at one specific scale may
be insufficient to predict that selection at another scale
(Mayor et al. 2009). Similar studies for brown bears
(Martin et al. 2012; Sánchez et al. 2014); Dar et al. 2021)
and other species (Shirk 2012; Shirk et al. 2014; Wan
et al. 2017; Klaassen and Broekhuis 2018) also support
the scale-dependent habitat selection. Consistent with
these studies, our results indicate that habitat selection
occurs across the range of scales for sloth bears, thus
supporting our hypothesis of scale-dependent habitat se-
lection in sloth bears. In this study, habitat features such
as access to water and travel routes used for daily ran-
ging patterns were perceived at fine-scale corresponding
to fourth-order selection of habitat variables (Johnson
1980). Likewise, the foraging patches such as sal forests
and moist and deciduous forests may correspond to the
third and second-order selection of habitat variables for
sloth bears and so on.

The selection of habitat variables at different scales
may also depend on the variation in the distribution of
the habitat resources (Johnson 1980; Mayor et al. 2009).
The spatial and seasonal variation in the availability of
food resources may explain the high predicted occur-
rences of sloth bears in farmlands and degraded habitats.
Farmlands and degraded habitats in our study area are
characterized by large patches of invasive weed Lantana
camera. Fruits of Lantana camera were consumed by
sloth bears in the winter season, and the fruits of the
most frequently occurring plant species were consumed
in the summer season (Rather et al. 2020a). In winter,
sloth bears primarily showed dependence on insects
(ants and termites), L. camera, and Ziziphus mauritiana,
all of which occurred at high abundance in the buffer
zone. Thus, high predicted occurrences of sloth bears in
disturbed habitats might have been due to the only food
items available in such habitats during the winter season.
Secondly, the farmlands and the degraded habitats rep-
resent ~ 40% of the reserve’s buffer area, and thus a sub-
stantial portion of the sloth bear occurrences was
recorded in such habitats. The Lantana patches are re-
portedly used as resting, denning, and foraging sites by
sloth bears (Yoganand 2005; Akhtar et al. 2007; Rat-
nayeke et al. 2007). Lastly, under no circumstances does
our study implicate increasing farmlands’ area to con-
serve sloth bears in disturbed habitats.

Fig. 3 Variable importance plot for scaled variables used in the multivariate random forest model of sloth bears based on model improvement
ratio (MIR). The degraded forest was the most important variable, and the river density was the least important variable. Rest of the variables are
listed in order of their relative importance to degraded forests. The X-axis represents the relative additional model improvement with the addition
of each successive variable. Variables included are degraded8km, degraded forests; Farmland_9km, farmlands; sal5km, sal-dominated forests;
drydec1km, dry deciduous forests; moistdec4km, moist deciduous forests; road1km, road density; and river1km, river density. The numerical value
succeeding each variable represents the respective spatial scale
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The habitat variables used in the multivariate model
were based on the previous habitat selection studies
of sloth bears (Joshi et al. 1995; Akhtar et al. 2004;
Yoganand et al. 2006; Ratnayeke et al. 2007; Puri
et al. 2015). Overall, sal, moist, and dry deciduous
forests are positively associated with sloth bear occur-
rences across their range. However, in largely dis-
turbed regions, these habitats represent only a small
portion of the total area, thus making the species-
habitat relationships complicate to predict or, in this
case to conflict with previous studies. Therefore, our
results are site-specific and make more sense when

applied to the disturbed regions. Puri et al. (2015)
also point that sloth bears are not limited by pro-
tected areas and occur widely in unprotected, human-
use habitats.
Only 28% of the total buffer area was predicted to

be suitable for sloth bears. Like previous studies, suit-
able habitats were predicted to occur in sal, moist,
and dry deciduous forests. However, these habitats
were predicted to be weak determiners of sloth bear
occurrence. We suspect this ambiguity to be related
to the small percentage of these habitats in the buffer
zone of the reserve. Positive association of sloth bears

Fig. 4 Predicted habitat suitability of sloth bears in and around Bandhavgarh Tiger Reserve. Red color indicates high suitability, and blue color
indicates low suitability
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with farmlands and degraded habitats and thereof
high suitability in such habitats may not be consid-
ered a general norm of sloth bear ecology. Sloth bears
are reported to occur and use disturbed habitats
across many areas of their range in India (Akhtar
et al. 2004).
Species distribution models that relate species occur-

rence data to environmental variables are now essential
tools in distributional and spatial ecology (Guisan and
Zimmermann 2000; Elith et al. 2006; Drew et al. 2011).
RF has been shown to perform better than other popular
algorithms under the conditions of low occurrence data.
The nationwide assessment of sloth bears using the
traditional occupancy modeling approach conducted

by Puri et al. (2015) predicted sloth bear occurrences
in Gir forests which are known not to harbor any
sloth bear population. Likewise, Mi et al. (2017) im-
plemented random forest for 33 records of Hooded
Crane (Grus monacha), 40 records of white-naped
crane (Grus vipio), and 75 records of black-necked
crane (Grus nigricollis). They found that random for-
est performed exceptionally well than TreeNet, Max-
ent, and CART. Thus, comparatively low occurrence
data used in this study would not have influenced
model predictions largely. Our model assessment
matrices also indicate better performance of the RF
algorithm in producing accurate predictive maps
under the conditions of low sampling intensity.

Fig. 5 Partial dependency plots for road density, river density, farmland, and degraded forest patches. The partial dependency plots represent the
marginal effect of each habitat variable while keeping the effect of other variables at their average value. The shaded gray region represents 95%
confidence intervals, and the red line indicates the average value. The X-axis represents the percentage of the variables ranging from 0 to 1%,
and Y-axis represents the predicted probability of sloth bear occurrence

Fig. 6 Partial dependency plots for dry deciduous forests, moist deciduous forests, and sal-dominated forests. The shaded gray region represents
95% confidence intervals, and the red line indicates the average value. The X-axis represents the percentage of the variables ranging from 0 to
1%, and Y-axis represents the predicted probability of the sloth bear occurrence
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Limitations, conclusion, and management
implications
One of the significant limitations of our study is biased
sampling in highly anthropogenic habitats, which may
lead to conflicting results compared to other studies
conducted in less disturbed areas. Thus, we recommend
a caution when inferences are drawn from such studies.
Nevertheless, this study still improves our understanding
of the sloth bear habitat relationships on a multi-scale
approach in a largely anthropogenic landscape. One of
the management priorities should be identifying and
protecting suitable habitats in disturbed regions and in-
tegrating the human-modified landscapes with the exist-
ing conservation landscape network as suggested by
previous studies. Researchers may undertake the suit-
ability assessments of sloth bears on a much larger
scale in future.
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