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Abstract 

Background:  Determining the appropriate window size is a critical step in the estimation process of stand structural 
variables based on remote sensing data. Because the value of the reference laser and image metrics that affect the 
quality of the prediction model depends on window size. However, suitable window sizes are usually determined 
by trial and error. There are a limited number of published studies evaluating appropriate window sizes for different 
remote sensing data. This research investigated the effect of window size on predicting forest structural variables 
using airborne LiDAR data, digital aerial image and WorldView-3 satellite image.

Results:  In the WorldView-3 and digital aerial image, significant differences were observed in the prediction accura-
cies of the structural variables according to different window sizes. For the estimation based on WorldView-3 in black 
pine stands, the optimal window sizes for stem number (N), volume (V), basal area (BA) and mean height (H) were 
determined as 1000 m2, 100 m2, 100 m2 and 600 m2, respectively. In oak stands, the R2 values of each moving window 
size were almost identical for N and BA. The optimal window size was 400 m2 for V and 600 m2 for H. For the estima-
tion based on aerial image in black pine stands, the 800 m2 window size was optimal for N and H, the 600 m2 window 
size was optimal for V and the 1000 m2 window size was optimal for BA. In the oak stands, the optimal window sizes 
for N, V, BA and H were determined as 1000 m2, 100 m2, 100 m2 and 600 m2, respectively. The optimal window sizes 
may need to be scaled up or down to match the stand canopy components. In the LiDAR data, the R2 values of each 
window size were almost identical for all variables of the black pine and the oak stands.

Conclusion:  This study illustrated that the window size has an effect on the prediction accuracy in estimating forest 
structural variables based on remote sensing data. Moreover, the results showed that the optimal window size for for-
est structural variables varies according to remote sensing data and tree species composition.
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Background
Forests are important ecosystems thanks to their many 
services, such as soil conservation, improving air and 
water quality, decreasing noise pollution, carbon storage 
(Lee et  al. 2010). For sustainable management of these 
ecosystems, data on horizontal and vertical forest struc-
ture are required (Pascual et  al. 2008; Koch et  al. 2009) 

because the forest structure has an important effect on 
ecosystem services (García et  al. 2018; Kaushal and 
Baishya 2021). Forest structural data are traditionally 
provided from field data of limited spatial extent. How-
ever, traditional methods involving the forest inventories 
process, which require labor-intensive field surveys, are 
time consuming and expensive (Kwak et  al. 2007; Joshi 
et al. 2015; García et al. 2018). Remote sensing data has 
been used as an auxiliary data source in forest inven-
tory since early days of remote sensing (Kayitakire et al. 
2006). Stand structural variables such as crown canopy, 
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species composition, stem density and basal area can be 
estimated using remote sensing data on the forest stand 
level. Therefore, the remote sensing data have great 
potential to reduce inventory cost and improve estima-
tion accuracy (Steinmann et al. 2013).

Aerial photographs are oldest remote sensing data used 
in forest inventory and have still an important role in 
forest planning (Morgan et al. 2010; Ozkan and Demirel 
2018). Over the last 30 years, there has been a transition 
from analogous photogrammetry to digital photogram-
metry as analogous aerial photographs are replaced with 
digital aerial images (Balenovic et al. 2015). In addition to 
high spatial resolution, RGBIR (Red, Green, Blue, Infra-
red) bands and digital data flow of digital aerial images 
provide a great advantage in estimating forest stand 
parameters and producing forest stand maps (Hájek 
2008). Current digital aerial cameras such as UltraCamX 
can provide digital images of very high (30 to 10 cm) spa-
tial resolution (Balenović et  al. 2015). Satellite images 
with very high spatial resolution are a cost-effective alter-
native source to aerial photographs. Satellite images have 
important advantages such as broad spatial coverage and 
temporally high frequency (García et al. 2018; Ustin and 
Middleton 2021). Numerous methods have been devel-
oped using image features such as reflectance values, tex-
ture features and vegetation indices derived from satellite 
images to estimate forest structural parameters (Ozdemir 
and Karnieli 2011; Ozkan et  al. 2016). LiDAR (Light 
Detection and Ranging) data, an active remote sens-
ing technology, has significant potential for the predic-
tion of forest structural variables. Unlike optical sensors, 
LiDAR has the ability to provide information about both 
horizontal and vertical structural features of forests (Lim 
et  al. 2003; Hu et  al. 2014). Therefore, LiDAR data can 
better capture the three-dimensional (3-D) structure of 
forest canopies than passive optical sensors, given their 
ability to penetrate the canopy to different depths (Zald 
et al. 2014; García et al. 2018). LiDAR which is among the 
available remote sensing data is a powerful data source 
for measuring and predicting forest structural features 
(Joshi et al. 2015; Zeybek and Vatandaslar 2021).

Due to these advantages, numerous studies have been 
conducted to evaluate the potential of each remote sens-
ing data in the forest inventory. The studies were first 
carried out based on visual interpretation. In stand vol-
ume estimates based on the visual interpretation of the 
aerial photograph, the relative error has been reported as 
between 14 and 45% and in the prediction based on the 
satellite image interpretation, the corresponding error 
has been reported as between 20 and 70% (Hyyppa et al. 
2001). The evolving expectations on the time, accuracy 
and cost effectiveness of forest inventory studies have led 
visual interpretation to be replaced by semi-automatic 

and automatic techniques over time (Hájek 2008). 
Tuominen and Pekkarinen (2005) evaluated the estima-
tion possibilities of some forest structural parameters 
(diameter at breast height, height, basal area, and vol-
ume) using digital aerial imagery. As a result of the study, 
it has been revealed that forest structural parameters are 
highly correlated with image features and can be pre-
dicted with high accuracy. In another study conducted 
by Ozkan and Demirel (2018) on pure red pine stands, 
it was revealed that stand parameters can be predicted 
using spectral and texture features derived from digital 
aerial images. In the study performed by Ozdemir and 
Karnieli (2011) it was stated that there were significant 
correlations between image texture features and forest 
structural parameters. Günlü et  al. (2021) evaluated the 
potential of WorldView-2 satellite imagery to estimate 
some stand parameters using different modeling tech-
niques in pure Crimean pine stands. The results of the 
study showed that the developed prediction models are 
useful for the estimation of stand parameters. Kanja and 
Karahalil (2019) modeled some stand parameters using 
airborne LiDAR data in pure red pine stands. The devel-
oped models revealed that stand parameters can be esti-
mated with high accuracy using LiDAR metrics.

The prediction accuracy of structural variables var-
ies considerably depending on the spatial resolution of 
image, sampling window size, laser and image metrics 
(Iovan et  al. 2008; Zenner et  al. 2009; Castillo-Santiago 
et  al. 2010; Steinmann et  al. 2013; Meng et  al. 2016). 
Several studies have shown that the sample plot size is 
an  important factor for the accuracy of forest inventory 
(Hájek 2008; García et  al. 2018; Robinson et  al. 2013). 
Ruiz et  al. 2014 pointed out that the larger sample plot 
sizes do not significantly increase the estimation accu-
racy and it should have a minimum size of 500–600 m2 
for volume estimation. Likewise, sampling window size 
affects the estimation accuracy of models because the 
value of the reference laser and image metrics that affect 
the prediction model quality, depends on sampling win-
dow size (Castillo-Santiago et  al. 2010; Steinmann et  al. 
2013; Meng et  al. 2016). While a small window size 
increases the noise content in the image, too large win-
dow size cannot effectively extract the information. In 
addition, a larger window size means more process-
ing time (Amini and Sumantyo 2009; Meng et al. 2016). 
Therefore, it is a critical step to determine the optimal 
window size that matches the forest canopy components, 
depending on the image spatial resolution.

Several studies have shown the impact of window size 
on the estimation accuracy of forest structural variables 
using remote sensing data. Holopainen and Wang (1998) 
stated that the optimal window size depends on for-
est stand class, spectral band and image scale. They also 
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stated that 20 × 20  m window size is the near-optimal 
window size for feature extraction from aerial photo-
graph in forest inventory. Kayitakire et  al. (2006) inves-
tigated the estimation of forest structural variables by 
means of texture features from IKONOS-2. It was stated 
that stand age is best explained by window size of 15 × 15 
pixels, density by window size of 5 × 5 pixels, height by 
window size of 15 × 15 pixels and basal area by window 
size of 25 × 25. Rich et al. (2010) determined that the pat-
terns in image texture of IKONOS satellite image did not 
change from 25 to 225 m2 window size. In the study con-
ducted by Tonolli et al. (2011), the accuracy of the esti-
mation of tree stem volume was assessed using LiDAR 
data. The study results revealed that optimal cell size is 
40 × 40  m. Steinmann et  al. (2013) stated that the win-
dow size of 25 × 25 m is optimal for estimating the for-
est growing stock volume using LiDAR data and aerial 
images. Meng et  al. (2016) tested seven window sizes 
(from 3 × 3 to 15 × 15 pixels) to estimate forest struc-
ture from the SPOT-5 satellite image. To determine the 
optimum window size, they calculated the Pearson cor-
relation coefficient of texture statistics with biomass and 
stated that 9 × 9 pixel window size is the minimum win-
dow size that provides the highest correlation coefficient. 
Zhao et al. (2018) identified the optimal window size for 
estimating canopy cover using QuickBird multispectral 
and panchromatic images. Window size of 15 × 15 pixels 
for panchromatic image and window size of 9 × 9 pixels 
for multispectral image were chosen as the optimal win-
dow size. Zhou et  al. (2020) developed growing stock 
volume estimation models using 3 × 3, 5 × 5, 7 × 7, 9 × 9, 
11 × 11, 13 × 13, and 15 × 15 window sizes. Spectral 
vegetation indices (SVIs), texture parameters and their 
combinations obtained from SPOT-6 satellite imagery 
were used in the study. They stated that 3 × 3 or 5 × 5 
window sizes gave better results than the others. Günlü 
et al. (2021) tested 12 different window sizes (from 3 × 3 
to 25 × 25) for the estimation of stand volume, basal area, 
number of trees and aboveground biomass from World-
View-2 satellite image. They emphasized that window 
sizes of 17 × 17, 19 × 19 and 23 × 23 gave the best results. 
According to these studies, optimal window size depends 
on remote sensing data and forest structural variables to 
be estimated. However, this issue has not been evaluated 
sufficiently yet. Further studies are needed to determine 
the optimal window sizes for estimation of forest struc-
ture features using remote sensing data.

The objective of this research is to investigate the 
effects of window size on estimation accuracy of forest 
structural variables based on LiDAR data, digital aerial 
image and WorldView-3 satellite image. More specifi-
cally, (i) sampling windows of different sizes (200, 400, 
600, 800 and 1000 m2) were developed from remote 

sensing data; (ii) estimation models were developed 
based on reference laser and image metrics extracted 
from image windows were developed; (iii) the effect of 
window size on accuracy of the models was analyzed and 
the optimal window sizes were determined for estimating 
forest structural variables.

Materials and methods
Study area
The study area is located on the Thrace side of the Mar-
mara region of Turkey (41° 09′ 15″–41° 11′ 01″ N and 28° 
59′ 17″–29° 02′ 25″ E) (Fig. 1). It has an elevation ranging 
from 10 to 237 m above sea level. In the study area with 
a total area of 2172 hectares, the forest area cover con-
stitutes 88% of the total area. Red pine, Black pine, Stone 
pine, Maritime pine, Oak, Chestnut, Beech, Linden, and 
Hornbeam species constitute a large number of stands 
in pure or mixed form. Most of the forest area consists 
of broadleaf stands which are dominated by oak species. 
Among the coniferous species, Black pine and Maritime 
pine are the dominant species. In addition, stand man-
agement regime of the forest is even-aged. Detailed infor-
mation for the research area was presented by Ozkan 
et al. (2020).

Field reference data
A field survey was performed between June and August 
2018 on the sample plots. A total of 45 samples were 
randomly selected from pure black pine and oak stands 
within a study area of 2172 hectares using stand maps 
produced based on the combination of aerial photograph 
and forest inventory data in the forest management plan. 
These stands were visited by a field crew and sample plots 
were established and the central points were located 
using GNSS/CORS GPS in each stand. The accuracy of 
the positioning was approximately 0.25  m. The sample 
plots were consisted of six concentric circles with an area 
of 100 m2 to 1000 m2 (Fig. 2a). All trees with a diameter 
at breast height (DBH)≥ 8 cm were recorded within each 
of the sample plots of different sizes and their heights 
measured with a Haglöf Vertex VL5 Laser field measur-
ing instrument. For the sample plot, stem number (N), 
basal area (BA, m2), volume (V, m3) and mean height 
(H, m) parameters were determined. Basal area was cal-
culated from the diameter measurements of all trees. 
These values that calculated for each tree in the sample 
plot were summed. Volume of each tree was computed 
based on species-specific equations obtained from the 
forest management plan. Total plot volume was calcu-
lated as the sum of the individual tree volumes. The mean 
height was determined as the arithmetic mean height of 
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all measured trees in the sample plot. The descriptive sta-
tistics of the ground truth data are depicted in Table 1.

Remote sensing data and processing
The remote sensing data set included airborne and satel-
lite data: digital aerial imagery, LiDAR and WorldView-3. 
High point density airborne LiDAR data for the study 
area were acquired on 22 July 2018, using the LMS-Q680i 
laser scanner system at a nominal altitude of 720  m 
above ground level. The system operated at 400  kHz 
laser pulse repetition rate and a wavelength of 1550 nm. 
While the point density varied throughout the study area, 
the minimum point density was 12 points/m2. Multiple 
turns were recorded as well as intensity values for each 
pulse. The maximum scan angles were ± 20° off-nadir. 
All artificial objects such as buildings, power lines, base 
stations have been removed from the raw LiDAR point 
cloud data using Global Mapper software. After this pro-
cess, the LiDAR point cloud was divided into two classes, 
ground and vegetation, to obtain a normalized point 
cloud (NPC). While the last return points were classi-
fied as ground points, points other than ground class 
were assigned to the vegetation class using the NDVI 

(Normalized Difference Vegetation Index) image. The 
digital terrain model (DTM), as a representation of the 
ground area, was generated with the TIN (triangulated 
irregular networks) from the ground class points (Kwak 
et al. 2007). After obtaining the DTM, the relative height 
of each point was determined as the difference between 
the point’s height and the terrain surface height. There-
fore, the NPC representing the height above ground level 
was obtained. Finally, to eliminate the effects of objects 
such as shrubs and rocks, the vegetation height thresh-
old (average 2  m) was applied to the NPC value, which 
represents the tree canopy height in forest areas (Næsset 
2002).

Aerial images were acquired on May 2015 using Ultra-
CamX (Microsoft, Vexcel Imaging GmbH) digital aerial 
camera. The camera has 7.2  µm physical sensor pixel 
size. Aerial images are totally comprised of four bands 
which are Red (580–700 nm), Green (480–630 nm), Blue 
(410–540 nm) and Infrared (690–1000 nm) bands. These 
images were taken as stereo from altitude of 4200  m 
above ground level with 70% forward and 30% side over-
lap. For each raw stereo image pairs, geometric calibra-
tion and radiometric correction utilized in ERDAS LPS 

Fig. 1  Study area
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(Hexagon Geospatial) software using interior (focal 
length, coordinates of the principal point) and exte-
rior (position and rotation of the camera) orientation 
parameters.

WorldView-3 multispectral image was acquired over 
the study area on June 2018 with 1.24 m spatial resolu-
tion. The multispectral image had four bands, includ-
ing blue (0.45–0.51  μm), green (0.51–0.58  μm), red 
(0.63–0.69  μm) and near-infrared (0.78–0.92  μm) 
bands. Atmospheric correction was carried out using 

the physical model based approach as implemented in 
ATCOR (PCI Geomatics 2017). Solar Zenith and Azi-
muth values of the satellite image, radiometric calibration 
values for each spectrum gathered from WorldView-3’s 
metadata and DTM generated from the LiDAR data were 
used to create a fog and aerosol-free satellite image, and 
object reflectance values were obtained using PCI Geo-
matica software. After this atmospheric correction pro-
cess, the orthorectification was performed using DTM 
and ground control points. To provide more detailed data 
on vegetation-covered areas, NDVI, the most commonly 
used vegetation index, was produced using NearIR-1 and 
Red bands of WorldView-3 (Cho et al. 2009).

Predictor variables
The laser and image metrics corresponding to the sample 
plots were extracted from three different remote sens-
ing data. These metrics that were used as predictor vari-
ables were obtained from circular image windows with 
different moving window sizes centered on each sample 
plot. For this, first of all, the center points of the ground 
sample plots were spatially registered on remote sensing 
data by means of GIS. Then a total of six concentric cir-
cular polygon layers of different sizes corresponding to 
ground sample areas were created (Fig. 2a). Finally, these 

Fig. 2  a Sample plot, b Remote sensing data and circular polygon layers, c Concentric window set

Table 1  Descriptive statistics of the forest structural variables in 
sample plots

Stand Variables Minimum Maximum Mean SD

Black pine N (ha−1) 525 1350 959 240

BA (m2 ha−1) 27,36 49,28 37,91 6,33

V (m3 ha−1) 144,60 451,66 226,63 68,38

H (m) 9,50 20,30 11,97 2,32

Oak N (ha−1) 550 1700 1115 286

BA (m2 ha−1) 18,74 37,35 24,86 3,73

V (m3 ha−1) 150,25 366,58 223,16 50,60

H (m) 13,00 18,00 15,33 1,32
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polygon layers were cut and the image windows with the 
same center points of 100, 200, 400, 600, 800 and 1000 
m2 were created separately for LiDAR, aerial image and 
WorldView-3 data (Fig. 2b). Thus, a total of 45 concentric 
window sets were created which of six image windows 
with a size of 100 m2 to 1000 m2 (Fig. 2c). Each laser and 
image metric was obtained by averaging over these image 
windows.

LiDAR metrics, that be used as potential variables in 
predictive models of forest structural variables, were 
computed for each LiDAR window. LiDAR metrics were 
derived from the normalized point clouds of the LiDAR 
windows using trial version of the LiDAR360 software. 
In this study, a total of 102 LiDAR metrics (LiDAR360 
2018) were extracted from LiDAR pulses using two basic 
properties of LiDAR data: "Height Metrics" and "Density 
Metrics".

Spectral and textural metrics were extracted from 
aerial images and WorldView-3 satellite image by aver-
aging their values within image windows. For each 
image window, the following spectral features were cal-
culated to explain potential variation in the forest struc-
tural variables: mean, standard deviation, skewness and 
NDVI values. The texture properties were determined 
according to the Gray Level Co-occurrence Matrix 
(GLCM) (Haralick et  al. 1973). GLCM is widely uti-
lized to describe the textural properties in remote sens-
ing studies (Kayitakire et al. 2006; Maltamo et al., 2006; 
Shamsoddini et al., 2013; Ozdemir and Donoghue 2013; 
Ozkan et  al. 2016,2020; Meng 2016; Zhao et  al. 2018). 
There are many texture properties defined by GLCM in 
three main groups as Contrast, Orderliness and Descrip-
tive (Ozdemir and Karnieli 2011). These properties can 
be affected by three main factors: (a) spatial resolution 
and spectral characteristics of remote sensing image; (b) 
characteristics of the sensed objects (dimension, shape, 
and spatial distribution); and (c) window size and envi-
ronmental conditions (Kayitakire et  al. 2006; Maltamo 
et  al. 2006; Shamsoddini et  al. 2013). In addition, it is 
difficult to determine the best properties (Shamsoddini 
et al. 2013). Hence, all GLCM properties for each window 
size on remote sensing data were derived using eCogni-
tion software.

Model construction and validation
The Random Forest algorithm implemented in the “Ran-
domForest” package within demo version of Addinsoft 
XLStat software was used to model the relationships 
between the image features extracted remote sensing 
data and forest structural parameters. The Random For-
est method (RF), which was proposed by Breiman (2001), 
is an ensemble-learning algorithm that combines a large 
set of regression trees and this algorithm can reduce the 

overfitting of models. Previous studies have revealed that 
the RF algorithm has a high prediction accuracy (Zhao 
et  al. 2018; Gao et  al. 2019). Therefore, this application 
has achieved broad popularity lately.

While generating decision trees in the RF algorithm, 
there are two basic parameters that must be determined 
by user. These are the number of decision trees (Ntree) 
to be produced and the number of variables (Mtry) to be 
tested each time. Since the RF algorithm is computation-
ally efficient, the Ntree can be kept as large as possible 
(Guan et  al. 2013). In most of the studies, Ntree value is 
determined as 500 which is default value of algorithm, 
since errors are fixed until the number of decision trees 
reaches 500. In addition, the Mtry parameter is usu-
ally determined to be 1/3 of the number of explanatory 
variables for regression (Liaw et  al. 2002). Explanatory 
variables are selected automatically in RF algorithm for 
regression. So that there is no need to select any explana-
tory variables before modeling.

In the study, after deciding on the best prediction 
model for forest structural parameters, the prediction 
error of the final model was estimated by leave-one-out 
cross-validation method. This method is a suitable vali-
dation method when a limited number of data is available 
for validation (Shamsoddini et al. 2013). In this method, 
for each forest parameters, one of the sample plots was 
eliminated from data set at a time and a model was devel-
oped using n−1 remaining plots. The dependent vari-
ables were then estimated for the removed sample plot. 
The procedure was repeated for each sample plot. Finally, 
the coefficient of determination (R2), and the root mean 
square error (RMSE) values between observed and pre-
dicted forest structural parameters were calculated to 
assess the overall accuracy of the fitted models.

Results
Using the random forest regression analysis, several pre-
diction models were developed for forest structural vari-
ables. All models were statistically significant (p < 0.01). 
Table  2 and Fig.  3 show the performance of different 
window sizes for prediction of structural variables in 
the Black pine stands. In the Black pine stands, it was 
observed that significant differences between image win-
dows in the estimation accuracy of forest structural vari-
ables. Forest structural variables were estimated with R2 
ranging from 0.70 (H, window size of 1000 m2) to 0.86 
(N, window size of 1000 m2) using features derived from 
WorldView-3 satellite image. The 100 m2 window size 
performed better for V and BA (R2 = 0.79 and 87, respec-
tively). The 1000 m2 window size provided the highest 
accuracy for N (R2 = 0.86). For H, 600 m2 window size 
performed relatively better (R2 = 0.75). The prediction 
accuracy of forest structural variables varied between 
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0.70 (for 100 m2 window size) and 0.88 (for 800 m2 win-
dow size) depending on the window size of digital aerial 
image. The model accuracy generally increased as the 
window size increased in aerial image. While the 1000 
m2 window size performed better for BA (R2 = 0.86), 600 
m2 window size for V (R2 = 0.78) and 800 m2 window size 
for N and H (R2 = 0.88 and 0.78) gave better results. The 

prediction accuracies ranged from 0.76 to 0.84 for LiDAR 
data depending on the window size. For all structural 
parameters, the estimation accuracies of the window 
sizes were almost the same. The R2 values varied between 
0.83 and 0.84 for N, 0.76 and 0.79 for V, 0.80 and 0.81 
for BA, and 0.80 and 0.83 for H. Therefore, a significant 

Table 2  Prediction results of the forest structural variables according to different window sizes (Black pine stands)

Forest 
variables

Window size WorldView-3 Aerial image LiDAR

R2 RMSE RMSE% R2 RMSE RMSE% R2 RMSE RMSE%

N 100 0.78 109.37 11.40 0.80 103.59 10.80 0.84 94.75 9.87

200 0.73 120.92 12.60 0.80 105.55 11.00 0.84 93.23 9.72

400 0.79 108.45 11.30 0.84 93.90 9.79 0.83 96.97 10.11

600 0.80 103.79 10.82 0.86 87.72 9.14 0.83 95.60 9.96

800 0.82 100.33 10.46 0.88 82.68 8.62 0.84 94.79 9.88

1000 0.86 87.24 9.09 0.83 95.31 9.93 0.84 94.57 9.86

V 100 0.79 30.50 13.46 0.77 31.30 13.81 0.76 32.62 14.39

200 0.75 33.27 14.68 0.75 33.28 14.69 0.78 31.21 13.77

400 0.74 33.84 14.93 0.74 33.97 14.99 0.79 30.51 13.46

600 0.77 32.24 14.23 0.78 31.36 13.84 0.79 30.83 13.60

800 0.77 31.78 14.02 0.75 33.53 14.80 0.79 31.10 13.72

1000 0.78 31.63 13.95 0.76 32.53 14.36 0.77 31.72 13.99

BA 100 0.87 2.19 5.78 0.82 2.64 6.97 0.80 2.78 7.33

200 0.82 2.62 6.92 0.76 3.01 7.94 0.81 2.68 7.08

400 0.81 2.71 7.15 0.79 2.85 7.53 0.80 2.74 7.23

600 0.79 2.80 7.38 0.81 2.67 7.05 0.81 2.64 6.97

800 0.76 3.04 8.03 0.82 2.63 6.94 0.81 2.73 7.19

1000 0.78 2.88 7.59 0.86 2.31 6.11 0.81 2.71 7.15

H 100 0.74 1.16 9.66 0.70 1.24 10.33 0.83 0.94 7.82

200 0.73 1.17 9.76 0.74 1.16 9.68 0.83 0.94 7.83

400 0.71 1.23 10.27 0.76 1.12 9.36 0.82 0.97 8.14

600 0.75 1.14 9.53 0.76 1.10 9.19 0.80 1.02 8.55

800 0.74 1.16 9.70 0.78 1.06 8.84 0.80 1.01 8.48

1000 0.70 1.23 10.31 0.78 1.05 8.80 0.81 0.99 8.24

Fig. 3  Illustration of the window size effect on the prediction of the forest structural variables a WorldView-3, b Aerial image, c LiDAR (Black pine 
stands)
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difference between window sizes could not be deter-
mined to estimate the structural parameters for LiDAR 
data set.

Table  3 and Fig.  4 show the performance of different 
window sizes for estimation of structural parameters in 
the oak stands. The forest structural variables were esti-
mated with R2 ranging from 0.71 to 0.84 using features 
derived from WorldView-3 windows. The 100 and 600 

m2 window sizes performed better for V (R2 = 0.80). The 
600 m2 window size provided the highest accuracy for 
H (R2 = 0.85). Since R2 values of window sizes were very 
close to each other in N (0.83 and 0.85) and BA (from 
0.71 to 0.75), a significant difference could not be found 
between window sizes. In the digital aerial image, the 200 
m2 window size for V and BA (R2 = 0.79 and 0.75) and 
400 m2 for H (R2 = 0.85) provided the highest prediction 

Table 3  Prediction results of the forest structural variables according to different window sizes (Oak stands)

Forest 
variables

Window size WorldView-3 Aerial image LiDAR

R2 RMSE RMSE% R2 RMSE RMSE% R2 RMSE RMSE%

N 100 0.84 110.55 9.92 0.90 87.67 7.87 0.89 91.34 8.20

200 0.84 112.58 10.10 0.90 89.56 8.04 0.90 87.54 7.85

400 0.83 114.38 10.26 0.92 79.37 7.12 0.89 90.91 8.16

600 0.84 110.47 9.91 0.92 81.14 7.28 0.90 90.13 8.09

800 0.84 111.87 10.04 0.91 83.60 7.50 0.89 92.92 8.34

1000 0.84 110.93 9.95 0.91 83.29 7.47 0.90 86.34 7.75

V 100 0.77 23.79 10.66 0.72 26.27 11.77 0.87 17.61 7.89

200 0.78 23.00 10.31 0.79 22.61 10.13 0.87 17.98 8.06

400 0.80 22.23 9.96 0.76 24.07 10.78 0.86 18.64 8.35

600 0.80 22.21 9.95 0.74 25.16 11.27 0.87 17.94 8.04

800 0.76 24.10 10.80 0.73 25.89 11.60 0.86 18.64 8.35

1000 0.78 23.32 10.45 0.71 26.61 11.92 0.86 18.59 8.33

BA 100 0.73 1.91 7.68 0.68 2.08 8.35 0.81 1.59 6.39

200 0.75 1.84 7.42 0.75 1.81 7.29 0.81 1.59 6.41

400 0.74 1.87 7.52 0.70 2.00 8.06 0.80 1.62 6.51

600 0.75 1.83 7.34 0.68 2.07 8.31 0.81 1.60 6.44

800 0.71 1.97 7.93 0.68 2.08 8.36 0.80 1.62 6.50

1000 0.75 1.83 7.35 0.67 2.09 8.41 0.80 1.62 6.53

H 100 0.77 0.62 4.04 0.80 0.58 3.77 0.89 0.43 2.82

200 0.83 0.53 3.46 0.79 0.59 3.87 0.90 0.41 2.66

400 0.82 0.54 3.55 0.85 0.50 3.24 0.88 0.44 2.89

600 0.85 0.49 3.21 0.81 0.56 3.64 0.89 0.42 2.73

800 0.82 0.54 3.52 0.79 0.59 3.82 0.89 0.43 2.77

1000 0.81 0.56 3.66 0.77 0.62 4.07 0.90 0.42 2.72

Fig. 4  Illustration of the window size effect on the prediction of the forest structural variables a WorldView-3, b Aerial image, c LiDAR (Oak stands)
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accuracy. On the other hand, no significant difference 
was found between window sizes for N. However, the 
prediction accuracy provided by the window sizes of 400 
m2 and 600 m2 is relatively higher than others. In LiDAR, 
the R2 value of window sizes varied between 0.89 and 
0.90 for N, 0.86 and 0.87 for V, 0.80 and 0.81 for BA, and 
0.89 and 0.90 for H. Therefore, a significant difference 
could not be determined between window sizes for all 
structural variables.

Table  4 shows the optimum window sizes for forest 
structural variables in the selected six window sizes. In 
our study, the window sizes explained by laser and image 
metrics of more than 50% of the variance was taken into 
consideration for optimal window size. Among these, the 
window size with the highest R2 value was selected as the 
optimal window size. It appears that the determined opti-
mal window size can be scaled up or down to fit forest 
canopy components. For example, the optimal window 
size was determined as 400 m2 to estimate the V using 
WorldView-3 in the oak stands. However, 200 m2 and 
600 m2 window sizes provided the same or close predic-
tion accuracy. Similarly, optimal window size for estimat-
ing N from digital aerial image is 400 m2. Due to the same 
or close estimation accuracy, window sizes of 200 m2 and 
600 m2 can also be selected optimally.

Discussion
This study compared the ability of window sizes to pre-
dict the forest structural variables using the remote 
sensing data. We first built our prediction models using 
both ground truth data set and remote sensing data sets. 
Using these models, N, V, BA and H were estimated for 
different window sizes in even-aged pure black pine and 
oak stands. A number of window size ranging from 100 
to 1000 m2 were tested. Our assumption was that the 
window size has an effect on the prediction accuracy. 
This assumption was supported by our findings that the 

prediction accuracy varies according to different window 
sizes.

In the WorldView-3 satellite image, significant differ-
ences were observed between the prediction accuracies 
of the image windows for forest structural variables. For 
each structural variable, all window sizes provided a coef-
ficient of determination greater than 0.70. In the black 
pine stands, R2 values calculated for the selected six win-
dow sizes showed that the 1000 m2 window size is more 
efficient than the other window sizes to estimate the N. 
The 600 m2 window size is optimal for H and the 100 m2 
window size is optimal for V and BA. In the case of oak 
stands, the R2 values of each moving window size (from 
100 to 1000 m2) were almost identical for N and BA. This 
indicates that there was little difference in significance 
level among the different window sizes. In this case, the 
appropriate window size can be determined as a size that 
minimizes a given cost function (Kayitakire et  al. 2006) 
and match stand canopy components (Rich et al. 2010). 
The R2 values of 400 and 600 m2 window sizes were 
identical for V. Therefore, both can be used as optimal 
window size to estimate the V. In addition, the 600 m2 
window sizes performed better to predict H.

Overall, the performance of large window sizes from 
digital aerial image was better than small window sizes 
for estimating forest structural variables. In the black 
pine stands, the prediction accuracy increases as window 
size increases, and window sizes larger than 600 m2 are 
more efficient than other window sizes for estimation. 
R2 values calculated for the selected six window sizes 
showed that the 800 m2 window size is optimal for N, 
the 600 m2 window size is optimal for V and the 1000 m2 
window size is optimal for BA. The 800 and 1000 m2 win-
dow sizes with same prediction accuracy obtained higher 
accuracy than smaller window sizes for H. Therefore, one 
of these two sizes can be used as the optimal window size 
to estimate H. The window size of 200 m2 seems optimal 
for estimating V and BA based on aerial image in the oak 
stands. While window sizes of 400 and 600 m2 are opti-
mal for estimating N, 400 m2 window size is optimal for 
H.

The prediction accuracy derived from leave-one-out 
cross-validation for forest structural variables showed 
that there is generally no significant difference among the 
different window sizes used for predicting in LiDAR data 
because the R2 values of each window size were almost 
identical for all variables in the black pine and oak stands.

There are limited number of published studies on rela-
tionships between window size and forest structural vari-
ables. These studies used different remote sensing data, 
different reference data and different analysis techniques. 
Hence, it is difficult to compare the results directly. How-
ever, studies can be compared to some extent by means of 

Table 4  Optimum window sizes for forest structural variables

Forest 
variables

Optimal window sizes (m2)

WorldView-3 Aerial image LiDAR

Black pine N 1000 800 100–1000

V 100 600 400–800

BA 100 1000 100–1000

H 600 800–1000 100–200

Oak N 100–1000 400–600 100–1000

V 400–600 200 100–1000

BA 100–1000 200 100–1000

H 600 400 100–1000
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changes in R2 values, which are considered as indicators 
of relationship fittings (Castillo-Santiago et al. 2010). The 
differences with similar studies are probably due to differ-
ences in stand structures and tree species composition. 
Holopainen and Wang (1998) stated that the window size 
of 20 × 20 m (400 m2) is the near-optimal window size for 
feature extraction from aerial photograph in forest inven-
tory. Kayitakire et  al. (2006) reported that the optimum 
window size for density, height and basal area is 5 × 5 
pixel, 15 × 15 pixel and 25 × 25 pixel, respectively. These 
window sizes provided the highest R2 values. Steinmann 
et al. (2013) stated that the window size of 25 × 25 m (625 
m2) is optimal for estimating the forest growing stock 
volume using LiDAR data and aerial images. Tonolli et al. 
(2011) tested different cell sizes (from 20 to 60  m) to 
map the tree stem volume using LiDAR data, and it was 
determined that 40 × 40  m cell size provided the high-
est R2 value as optimal cell size. By  contrary, we found 
that there is no significant difference among the different 
window sizes for predicting forest structural variables. 
Meng et al. (2016) used the spectral and texture features 
extracted from seven different window sizes to estimate 
the forest structure from the SPOT-5 satellite image. 
They revealed that the window size of 9 × 9 pixels is the 
optimum size for calculating texture statistics. Zhao et al. 
(2018) concluded that the optimal window size increases 
as the spatial resolution increases using QuickBird mul-
tispectral and panchromatic images. On the other hand, 
our study results revealed that a generalization cannot be 
made for LiDAR, WorldView-3 and digital aerial imagery. 
According to Günlü et al. (2021), the small window size 
for WorldView-2 did not improve the estimation result 
(except for the number of trees). It was emphasized that 
17 × 17, 19 × 19 and 23 × 23 window sizes gave the best 
results. In our study, small window sizes generally yielded 
the best results for coniferous stands, except for the 
number of trees. Similarly, Zhou et al. (2020) found that 
smaller window sizes (such as 3 × 3 and 5 × 5) give better 
results overall.

As a result, the window size, which is used to calculate 
the reference laser and image metrics in prediction of 
forest structural variables based on remote sensing data, 
influences the prediction accuracy. The optimal window 
size varies according to remote sensing data, tree type 
composition and stand variable to be predicted. The opti-
mal window size can be scaled up or down to fit forest 
canopy components (Rich et al. 2010).

Conclusion
This study explored the effect of window size on estima-
tion of forest structural variables using airborne LiDAR, 
digital aerial image and WorldView-3 satellite data. The 
estimation models were created using ground truth 

data set and remote sensing data set in the black pine 
and oak stands, and estimation accuracies of stand vari-
ables such as stem number, volume, basal area and mean 
height were calculated for different window sizes. We 
compared the estimation accuracy for different mov-
ing window sizes ranging from 100 to 1000 m2 to find 
the optimal window size. In the digital aerial image and 
WorldView-3 satellite data, significant differences were 
observed between the prediction accuracies of the image 
windows for forest structural variables. However, in the 
LiDAR data, the prediction accuracies for each mov-
ing window size were almost identical. Therefore, there 
was no significant difference between different sizes. We 
invite other researchers to do similar studies using differ-
ent remote sensing data in stands with different structure 
and species composition.
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