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Abstract 

Background:  Dispersal is an important event for most organisms at least once in their life cycle. The evolution of 
dispersal can be influenced by local adaptation, landscape structure, and perceived temporal and spatial variation. 
The interaction between local adaptation, landscape heterogeneity, temporal variability and rules of dispersal may be 
more complex than previously assumed. Therefore, we sought to understand the influence of emigration rules and 
landscape structure on emerging dispersal rates and traits. Here, we implemented an individual-based model (IBM) of 
trait evolution in scenarios characterized by different landscape structures and different degrees of spatial heteroge-
neity and global temporal variation. Individuals could evolve two traits coding for their environmental niche (position 
of niche optimum and niche width), and two traits determining nearest-neighbor dispersal: an individual emigrates 
with a probability defined by the first trait (random emigration), but emigrates with certainty if the fertility expected in 
the patch of residence falls below a threshold specified by the second trait (habitat-dependent emigration).

Results:  We note an interaction effect between dispersal strategy and spatial variance—lower emigration under 
habitat-dependent than under random emigration if spatial heterogeneity is low, but eventually a reversal of this 
ranking if heterogeneity becomes large. Landscapes with sharp transition of habitat attributes result in a high degree 
of spatial sorting, while fractal landscapes do not. Emigration rates are overall lowest, when spatial variation is highest.

Conclusions:  We conclude that emergent emigration rates are influenced more by landscape structure and spatio-
temporal heterogeneity than by the emigration strategy. With the ongoing land use change more research into this 
topic could help highlight the difficulties species might face under the change from landscapes characterized by 
gradual transition zones to landscapes dominated by abrupt ecotones, the latter typical for agricultural and urban 
settings.
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Background
Dispersal is an important event for most organisms at 
least once in their life cycle. Dispersal can facilitate sur-
vival and lead to avoidance of kin-competition or ecolog-
ical sinks (Barnes et  al. 2015; Bowler and Benton, 2005; 
Clobert et al. 2009; Cobben et al. 2012; Goff et al. 2019; 

Mortier et al. 2018; Poethke et al. 2007; Romero-Mujalli 
et al. 2018). The relationship between spatial and tempo-
ral variation in environmental conditions may also influ-
ence the evolution of emigration related traits but not of 
local adaptation under random global dispersal, i.e., when 
typical dispersal distances would be much larger than the 
scale of spatial correlation (Sieger and Hovestadt 2020). 
Dispersal with  more limited dispersal distance, how-
ever, was not investigated, even though limited dispersal 
was shown to influence the evolution of local adaptation 
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(Bowler and Benton 2005; Bridle et al. 2019; Jacob et al. 
2018; Kisdi et al. 2020) while also being influenced by the 
level of local adaptation itself (Kisdi et al. 2020).

The simplifying assumption of global dispersal is wide-
spread in modeling approaches. It assumes that disper-
sal distances are large in relation to spatial structure of 
the landscape, but disregards the tripartite composition 
of the dispersal process. Individuals or propagules have 
to leave their natal patch (emigration), move between 
patches, and immigrate into a new patch (Bowler and 
Benton 2005; Crook et  al. 2020). Emigration can be 
population dependent (e.g., density-dependent) or state-
dependent (e.g., fitness or life stage-dependent) (Bona 
et  al. 2019; Cronin et  al. 2020). Habitat choice is an 
important immigration strategy and was shown to evolve 
faster than local adaptation (Kisdi et  al. 2020). Habi-
tat choice can also accelerate local adaptation (Cama-
cho et al. 2020; Jacob et al. 2018). Overall, dispersal can 
have opposing effects on local adaptation: It can either 
increase fitness by enhancing local adaptation via immi-
gration of individuals that choose patches matching their 
niche attributes (Jacob et  al. 2018; Kisdi et  al. 2020). It 
can also reduce mean fitness, due to the immigration of 
maladapted individuals, which changes mean trait values 
and/or trait variation. Finally, dispersal can increase fit-
ness by increasing the genetic variation, which increases 
evolutionary potential (Bridle et al. 2019). Which of those 
effects dominates in a population  depends on the spatial 
structure of the landscape under consideration (Bridle 
et al. 2019; Jacob et al. 2019).

The most apparent way in which landscape structure 
can impede dispersal is landscape fragmentation (Barnes 
et al. 2015; Jacob et al. 2020). If suitable patch types are 
too far apart to be easily reached, selection for dispersal 
can weaken (Kubisch et al. 2013; Sinai et al. 2019). Even 
in non-fragmented landscapes, landscape (viz. patch 
type) heterogeneity can influence the evolution of dis-
persal because an organism’s mobility determines the 
environmental variation it encounters during its lifetime 
(Bridle et  al. 2019; Kaemingk et  al. 2019; Schiffers et  al. 
2014). If individuals disperse far (search widely) and fre-
quently in heterogeneous landscapes, they will encounter 
a wider variety of environmental conditions. This high 
variety of environmental conditions can lead to diminish-
ing fitness, especially in specialized species. Landscape 
heterogeneity is thus usually considered to be detrimen-
tal to the evolution of frequent dispersal (Bridle et  al. 
2019; Kaemingk et al. 2019; Kubisch et al. 2013; Schiffers 
et al. 2014; Sinai et al. 2019). In principle, landscape het-
erogeneity could also be beneficial since it increases the 
chance to encounter new patches where the conditions fit 
the individual’s niche optimum better. Without informed 
or habitat-orientated immigration this is, however, not 

likely to happen if the favored patch type is itself rare 
(Clobert et al. 2009; Kubisch et al. 2014). Consequently, 
landscape homogeneity will generally lead to increased 
dispersal probabilities since dispersal is less penalized by 
an increased possibility to encounter unsuitable patches. 
However, in this case, population density could be simi-
lar across the whole landscape and therefore decrease the 
expected differences in fitness expectation. This would 
eventually leave avoidance of kin-competition as the pri-
mary benefit of dispersal (Poethke et al. 2007).

Dispersal can also be a bet-hedging strategy against 
adverse conditions imposed by temporal variability. Par-
ticularly, under extreme conditions dispersers may find a 
patch that is, in this particular period (e.g., year, season), 
more similar to the optimal conditions of an individual 
than its natal patch, even though that habitat might not 
provide optimal conditions under average conditions. We 
show in a previous study that—especially in patches that 
deviate far from the landscape mean—individuals evolve 
high dispersal probability when spatial variation is high; 
this bet-hedging strategy leads to higher fitness expec-
tations of dispersers than philopatrics in extreme years 
(Sieger and Hovestadt 2020). The benefit of such a strat-
egy could further be advanced by selectively emigrating 
whenever fitness expectations become low. Obviously, 
for generalist individuals that do not experience a pro-
nounced fitness-decline in a wider array of patch condi-
tions, these arguments are generally of less relevance.

Schiffers (2014) showed in a simulation study that not 
only the heterogeneity at large, but also the geometry of 
a landscape can influence the evolution of dispersal. In 
checkerboard landscapes, with distinct edges between 
patches, the grain size (i.e., the size of a cluster of patches 
with the same attribute) highly influenced the speed of 
range expansion, as well as other population characteris-
tics. In gradient landscapes the evolved dispersal distance 
depended on the length of the gradient: steeper gradients 
favored shorter dispersal distances, while shallower gra-
dients selected for longer distances. Furthermore, edge 
effects (Kaemingk et  al. 2019), as well as patch connec-
tivity (Cronin et al. 2020; Fobert et al. 2019; Masier and 
Bonte 2020; Schwarzmueller et  al. 2019) and structure 
of the natal habitat (Ducros et al. 2020) have been found 
to shape dispersal syndromes. Overall, this leaves the 
impression that landscape structure can strongly influ-
ence dispersal.

The insights and findings mentioned above suggest 
that the interaction between local adaptation, landscape 
heterogeneity, temporal variability and rules of dispersal 
may be more complex than previously assumed. Here, 
we examine such interactions and especially investigate 
the influence of emigration rules on evolving dispersal 
traits and rates. In particular, we hypothesize that: (i) 



Page 3 of 13Sieger and Hovestadt ﻿Ecological Processes           (2021) 10:73 	

emigration decreases with increasing spatial variation, 
regardless of emigration strategy; (ii) existence of big-
ger habitat clusters, viz. stronger spatial autocorrela-
tion leads to more emigration (into similar habitat); (iii) 
steep transition zones with (clear) habitat edges promote 
spatial sorting of dispersal phenotypes with lower emi-
gration from ecotones, and (iv) habitat-dependent emi-
gration results in lower overall emigration than random 
emigration. We expect the disadvantages of emigration to 
be alleviated when emigration only occurs when fitness 
expectations in the natal patch are low.

Materials and methods
Overview
For this study, we expanded the metapopulation model 
of annual, haploid individuals already described in Sieger 
and Hovestadt (2020) to a set of simulations in differently 
structured landscapes and implemented different dis-
persal strategies, using the programming language Julia 
(Bezanson et al. 2012). Each patch of a landscape (grid-
cell) is characterized by a certain mean habitat value 
(e.g., a certain cover type) so that the landscape exhibits 
spatial variability in patch features. These values can be 
interpreted as reflecting spatial variance in habitat con-
ditions like mean temperature or annual precipitation, 
but every other continuous environmental variable vary-
ing over space is just as likely (e.g., soil nitrogen content, 
water oxygen content, pH, or salinity), even though such 
parameters are less likely to rapidly fluctuate in time. As 
explained in more detail below, habitat attributes addi-
tionally underlie global temporal variability, so that con-
ditions in any patch are variable in time. We assume, 
however, that such variability is completely synchronized 
across the landscape as might be true for the regional 
impact of actual climatic conditions.

Any patch houses one population of haploid organ-
isms as described in Sieger et al. (2019). Individuals can 
disperse to other patches, with dispersal determined by 
either a single (coding for random dispersal) or two herit-
able traits, with the second coding for fertility-dependent 
emigration; we use fertility expectation (habitat-depend-
ent expected number of offspring) as a proxy for fitness 
here. The dispersal traits and both niche traits mutate 
during inheritance, thus allowing for adaptation to simu-
lated conditions. Further details will be explained below.
Landscapes and scenarios
The metapopulation covers a spatially heterogeneous 
landscape of 64 by 64 habitat patches wrapped into a 
torus. We use either "tiled" landscapes or fractal land-
scapes. The tiled landscapes are characterized by habitat 
clusters (aggregations of several patches) that share the 
same habitat value and have sharp edges between them. 
Such landscapes were created with the NLMR-package 

(Sciani et al. 2018) in R 3.5.3 (R Core Team 2018), using 
the nlm_random_ rectangular_cluster() tool. The sec-
ond were created with an algorithm for autocorrelated 
landscapes developed by Chipperfield et al. (2011), with 
the level of autocorrelation specified by the Hurst index. 
With both algorithms, the patches had habitat values 
between -1 and 1. Here, the neighboring patches have 
similar but not exactly the same habitat values, and show 
a gradual transition in patch conditions. Consequently, 
borders between different patch types are more pro-
nounced in the "tiled" landscape type, since the edges 
between habitat clusters are clear cut. On the other hand, 
neighborhoods (a patch and its eight surrounding neigh-
bors) in fractal landscapes usually have a non-zero stand-
ard deviation of habitat attributes. In tiled landscapes, all 
patches of a habitat cluster share the same environmen-
tal mean, which means that any neighborhood inside 
the habitat cluster has a standard deviation of zero; only 
patches directly at the edge between habitat clusters have 
a non-zero neighborhood standard deviation.

We standardized each of the generated landscapes to 
the mean value of 0, by calculating the mean of the land-
scape and subtracting it from each patch’s value. The 
landscapes used as fractal landscapes with small patch 
cluster sizes (Hurst index of 0.3) were the same as the 
ones used in Sieger and Hovestadt (2020). To achieve 
similarly variable landscapes for the other three types of 
landscape structure, we created more landscapes than 
needed with the above-mentioned algorithms (fractal 
with a Hurst index of 0.9 and tiled with bigger [mini-
mum habitat cluster length minlv: 21 patches, maximum 
habitat cluster length maxlv: 32 patches] or smaller habi-
tat clusters [minlv: 2 patches, maxlv: 12 patches]) and 
selected five for each category that matched the stand-
ard deviation ( σS ≈ 0.32 ) of the five landscapes used in 
Sieger and Hovestadt (2020). To reduce variance that 
was unaccounted for, between simulation experiments 
we stored five replicated realizations for each of the four 
landscape types, i.e., ‘fractal’ or ‘tiled’ and ‘small’ or ‘big’ 
habitat clusters (see Fig. 1 for examples) for use in all the 
simulation scenarios explained below. To examine the 
influence of the relationship between temporal and spa-
tial heterogeneity, we further created instances of the 20 
landscapes with different spatial heterogeneity. In the 
original set of landscapes, the average spatial standard 
deviation was σS = 0.32 . To achieve different relation-
ships, we kept the temporal heterogeneity the same, but 
multiplied each patch’s habitat attribute with either 2, 4 
or 8 ( σS ∈ 0.32, 0.64, 1.28, 2.56 ). This resulted in 80 dis-
tinct landscapes. 

Each landscape additionally experiences global tem-
poral environmental heterogeneity: at the beginning of 
every time step t a single random value, drawn from a 
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normal distribution with mean = 0 and σT = 1, is added 
to any patch’s mean environmental value to form the cur-
rent environmental value of each patch. Consequently, 
local conditions vary in time, thus modulating the indi-
viduals’ fitness expectations. For repeatability and to 
avoid unaccounted variance we created three different 
time series of environmental heterogeneity, which are 
utilized in all of the simulation experiments described 
below. All following landscape scenarios were thus based 
on 5 × 3 replicated simulation runs per type of landscape 
structure. Each landscape was used for modeling the 
metapopulation for three replicates, with the respective 
vector of temporal variation, each for the time span of 
300 generations. This was done for both implemented 
dispersal strategies and a strong ( α = 2 ) or weak ( α = 4 ) 
trade-off (see below).

Life‑cycle and population dynamics
After local patch conditions have been set to the new 
actual condition in each time step, newborn adult indi-
viduals first "decide" whether to disperse. In all simu-
lation scenarios each individual carries a heritable and 
mutable trait d that codes for the probability to leave its 
natal patch. In some scenarios, however, a second dis-
persal trait f  encodes an additional emigration fertility 
threshold: if the expected fitness (calculated accord-
ing to Eq.  1; see below) falls below f  the individual 
emigrates with certainty, otherwise it emigrates with 
its base probability p = d . In the latter case, an indi-
vidual leaves the natal patch when a random number 
drawn from a uniform distribution U [0, 1] is lower than 
the individual’s dispersal probability p . An emigrating 
individual either dies with a given dispersal mortality 
m = 0.1 or immigrates into a patch randomly selected 
from the eight neighboring patches. Depending on 

simulation scenarios, individuals therefore either 
exhibit two of the following emigration strategies: (1) 
random emigration, as implemented in many previ-
ous simulation or analytical studies of this type like 
(Comins et  al. 1980; Kubisch et  al. 2013, 2014; Travis 
and Dytham 1999) with nearest-neighbor dispersal 
(referred to as NN), or (2) random nearest-neighbor 
dispersal combined with a patch (fitness)-dependent 
emigration criterion (referred to as HE). We did not 
include habitat choice of immigrants or scouting into 
our dispersal strategies.

After dispersal, density-independent but patch-
dependent reproduction of the Nj adults i in each patch 
j takes place. The fit between environmental conditions 
and the individual i ’s niche determines its reproductive 
success: the individual’s expected fertility is defined by 
two heritable traits, the position of the niche optimum hi 
in the environmental space and its niche width (habitat 
tolerance) gi . Combined, the two traits define a normal 
distribution for the expected fertility around the niche 
optimum. The expected number of offspring for each 
adult i is thus calculated, with inclusion of a general-
ist–specialist trade-off term (Eq. 1), following Chaianun-
porn et al. (2015). The resulting, environment dependent 
expected number of offspring for adult i with traits hi and 
gi in patch j , L

(

Hj,t , gi
)

 at time t is calculated as:

with R0 the maximum possible offspring number. The 
specialist–generalist trade-off is calculated as:

(1)Li
(

Hj,t , hi, gi
)

=
R0 · Ti · e

−(Hj,t−hi)
2

g2i
,

(2)Ti =
e−g2i

2α2
.

Fig. 1  Example landscapes for each of the four landscape types generated (from scenarios with very high spatial heterogeneity, σS ≈ 2.56 ). From 
left to right: fractal with big habitat clusters (Hurst index = 0.9), fractal with small habitat clusters (Hurst index = 0.3), tiled landscape with big habitat 
clusters (minimum habitat cluster length minlv: 21 patches, maximum habitat cluster length maxlv: 32 patches) and tiled with small habitat clusters 
(minlv: 2 patches, maxlv: 12 patches). Each landscape type group is presented by 5 replicates that were used in all simulation experiments. The 
legend shows the habitat value’s deviation from the landscapes’ mean (0) (see Initialization and scenarios)
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Note that larger values of α imply lower trade-off costs.
When the difference between hi and Hj,t is low or the 

value of gi is high, Li
(

Hj,t , gi
)

 is also high. The actual 
number of offspring (larvae) born by each adult i in 
patch j is generated by drawing from a Poisson-distri-
bution with mean Li

(

Hj,t , hi, gi
)

 . After the birth of off-
spring, the adult population dies.

The total number of larvae L
(

j, t
)

 produced in patch 
j at time t then undergo density-dependent mortality, 
with survival probability calculated according to the 
Beverton–Holt model:

with a =
R0−1
K ·R0

 and K  the carrying capacity. This sur-
vival probability is used to allocate a random binomial 
factor to each individual offspring indicating whether it 
survives or not; the surviving larvae constitute the new 
adult population of the next generation. One time step t 
therefore equals one generation.

All four trait values of an individual are inherited from 
the parent and evolve by mutation and selection. Evolu-
tion of the niche optimum and dispersal traits are not 
penalized, but according to equation (Eq.  1) enlarging 
niche width underlies a trade-off of different strength 
(parameter α ), depending on the scenarios: It is either 
weak ( α = 4 , i.e., evolution of a higher tolerance dimin-
ishes maximum fitness at the optimum only slightly), or 
strong ( α = 2 ), leading to a bigger drop in maximum fit-
ness when tolerance increases. The traits of each individ-
ual mutate separately and in each generation according to 
the following rules. A value drawn from a normal distri-
bution with mean 0 and standard deviation 0.03 is added 
to the niche optimum inherited from the parent. The tol-
erance trait value must be restricted to a range gi > 0 ; 
for mutating the trait we thus multiply the parental trait 
with a value drawn from a uniform distribution between 
0.97 and 1.03. The dispersal probability d and the fertil-
ity threshold f  are changed additively by adding a value 
drawn from a normal distribution with mean 0 and 
standard deviation 0.001. Fertility traits of f < 0 will lead 
to the same results as f = 0 . Values for f ≤ 0 imply that 
the individual would never emigrate because of low fit-
ness expectations. Values for d are allowed to take values 
outside the range [0, 1], but the dispersal routine imple-
mented treats dispersal with d < 0 as d = 0 and values of 
d > 1 as d = 1 . Note that in the NN scenarios the fertility 
threshold f  becomes a neutral trait as it does not affect 
the dispersal behavior.

(3)si,j,t =
1

1+ a · L
(

Hj,t , gi
) ,

Initialization and scenarios
All 64 × 64 patches in a landscape were initialized with 
100 individuals each. Each individual was initialized with 
a niche optimum drawn from a normal distribution with 
the environmental attribute of their patch of placement 
as mean and a standard deviation 0.2. The niche width 
(tolerance) was drawn from a log-normal distribution 
with σg and µg , which were calculated from the results 
for the last generation in the simulations of Sieger and 
Hovestadt (2020) for each trade-off strength, to speed up 
adaptive evolution. To calculate parameters µg and σg of 
the log-normal distribution from the evolved trait values 
gi , the means m and variance v of gi were inserted into 
the arithmetic moments of the log-normal distribution 
for mean (first moment, Eq.  4) and variance (second 
moment, Eq. 5):

and

The starting dispersal probability d for each individ-
ual is 0.2, while the fertility threshold f  is drawn from a 
uniform distribution [0,R0] , with R0 = 10 . The carrying 
capacity K  of each patch is 1000 individuals.

Analysis
Graphical presentations of results were created using R 
(R Core Team, 2018) with the ‘tidyverse’ package (Wick-
ham 2019). For each patch in each landscape scenario, 
the population means of all trait values, as well as the 
mean population size and fertility (as a proxy for fitness) 
were calculated and stored every fifth generation. Local 
adaptation and expected fitness were calculated before 
dispersal so that fitness values relate to the situation in 
the individuals’ natal patch. Values of the random disper-
sal trait d < 0 were set to d = 0 for analysis since values 
lower than 0 induce the same effect as d = 0.

Additionally, we fitted a linear mixed effects model 
(lmer from the lme4 package (Bates et  al. 2015), R ver-
sion 3.6.3 [R Core Team 2018]) to estimate effect of emi-
gration strategy (HE, NN), landscape_type (fractal, tiled), 
habitat cluster type (big, small), spatial_heterogeneity 
( σS ∈ 0.32, 0.64, 1.28, 2.56 ) on arcsine transformed emi-
gration rate, dispersal probability trait, and proportion 
of emigration caused by the fitness threshold trait. We 
included landscape number (1–5) time series number 
(1–3) as random effects. For the fitness threshold trait, 
we fitted a lmer model using only the results from the HE 

(4)g = ln





m
�

1+ v
m2





(5)σ 2
g = ln

(

1+
v

m2

)

.
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scenarios because the trait is not meaningful in the NN 
scenarios. The fixed effects here were the landscape type 
(fractal, tiled), habitat cluster type (big, small), spatial_
heterogeneity ( σS ∈ 0.32, 0.64, 1.28, 2.56 ). Results of lmer 
models were not used for statistical significance tests as 
this is not meaningful in modeling approaches but to 
estimate variance components for each of the experimen-
tal variables. Variance components were extracted using 
the “insight” R library (Lüdecke et  al. 2019) using the 
“get_variance()” function with fixed, random and residual 
options.

Results
Since the results from scenarios with a weak and strong 
trade-off were qualitatively similar, we only show the data 
from scenarios with a strong trade-off. A weaker trade-
off leads to evolution of higher tolerance trait values, 
subsequently to higher fitness expectations and therefore 
to higher fitness threshold values. This, however, did not 
lead to fundamentally different results and will therefore 
not be discussed in detail.

In our simulations, average individual habitat optima 
match the average local conditions in their natal patch; 
the absolute deviation of the trait h from average 
patch conditions is near 0. Even in extreme patches no 

adaptation gap can be found after 300 generations. This 
is the case regardless of landscape type, habitat cluster 
size, or degree of spatial variation. This also contrasts 
with our previous findings for global dispersal, where 
certain adaptation gaps formed in extreme patches 
(Sieger and Hovestadt 2020). On average, the expected 
fitness of an individual (number of offspring) depends 
only on the current habitat value and neither on the 
habitat cluster size nor on the landscape type (Addi-
tional file 1: Fig. S1). The evolving niche width was also 
unaffected by the different scenarios and landscape 
structures and only depended on the specialist–gener-
alist trade-off strength (Additional file 1: Fig. S2).

The realized emigration rate is generally higher in 
tiled landscapes than in fractal landscapes, especially 
when habitat clusters are big. With increasing spatial 
variation, emigration rate decreases. This decline is 
least in tiled landscapes with big habitat clusters, i.e., 
the effect of spatial variation on emigration rate is com-
paratively small. In fractal landscapes with big habi-
tat clusters and both fractal and tiled landscapes with 
small habitat clusters, the decline is much steeper with 
increasing spatial heterogeneity. The lowest overall 
emigration rates emerge in fractal landscapes with high 

Fig. 2  Mean realized emigration rate across dispersal strategy in the last generation of each simulation (NN, HE), landscape type, and cluster size. 
Blue indicates random nearest neighbor emigration (NN), green results for habitat-dependent emigration (HE). Light colors show the result for the 
fractal, dark shades for the tiled landscapes. The left column corresponds to big habitat clusters, the right to small habitat clusters. Global temporal 
variation stays the same ( σT = 1 ). Emigration rate decreases with increasing spatial variation (from left to right)
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spatial variation and small habitat clusters (Fig. 2, right 
panel).

In scenarios with random nearest neighbor emigra-
tion (NN), evolution of the emigration trait d was highly 
influenced by the different landscape and spatio-tempo-
ral scenarios. First, emigration rate declined as spatial 
patch variation increased. Second, the magnitude of this 
decline depended on both the landscape type and the 
habitat cluster size. Generally, the decline was less pro-
nounced in tiled compared to fractal landscapes, result-
ing in evolution of substantially higher emigration rates 
in the former landscapes if spatial variation is large. The 
lowest rates emerged in fractal landscapes with small 
habitat clusters and high spatial variation, where almost 
all patches had a mean emigration rate d ≈ 0 . Except for 
scenarios with very low spatial variation (0.32), emigra-
tion rate was also higher in tiled landscapes (Fig. 4, top). 
In NN scenarios, the emergent emigration rate depended 
only on the emigration probability trait values d , which 
were therefore almost identical in value.

The spatial sorting of the emigration rate (Fig.  3) also 
was visible in the random emigration trait d, especially 
with higher spatial variation and in tiled landscapes  with 
big habitat clusters (Additional file 1: Fig. S3).

In the scenarios with patch-dependent emigration 
(HE), the random emigration trait d generally evolved 
to lower values than in scenarios with random emigra-
tion only (NN), regardless of habitat cluster size and 
landscape type (Fig.  4, top). However, with increasing 
spatial variation, the difference between HE and NN 
scenarios decreased. In scenarios with small habitat 

clusters and high spatial variation, the trait d was actu-
ally lowest in the NN scenarios with fractal landscapes, 
rather than in the HE scenarios. The trait value of the 
fertility threshold f  was selected towards mean values 
of around f ≈ 0.75 , whereas average fertility values 
were fertility ≈ 6.4 . With increasing spatial variation, 
the fertility threshold decreased, with overall lower 
values in fractal landscapes as compared to tiled land-
scapes. Small habitat clustering also led to lower trait 
values of f  , in either landscape type. Only with very 
low (0.32) spatial variation did the difference between 
landscape type and habitat cluster sizes become negli-
gible (Fig. 4, center). However, the effects of landscape 
structure and spatial heterogeneity on f  were generally 
less pronounced compared to their effects on the dis-
persal trait d.

A systematic difference between the observed overall 
emigration rate and the emigration probability trait d 
indicated the surplus of emigration that was caused by 
emigration due to expected fertility being lower than f  
(with some stochastic variation caused by the stochas-
ticity of the random baseline emigration). Consider-
ing this, we estimated the proportion of all emigration 
events that were caused by expected fitness below the 
fertility threshold. With increasing spatial variation, 
emigration was proportionally more often caused by 
low expected fertility, especially in fractal landscapes 
(Fig.  4, bottom). However, it is important to keep in 
mind that this does not equal high emigration rates: the 
total emigration rates in those scenarios were compara-
tively low. In the unlikely event of emigration, it was, 

Fig. 3  Emerging emigration rates in each patch in an example landscape (the same landscapes and panel configuration as in Fig. 1). Top row shows 
the results of scenarios with random emigration (NN), second row with habitat-dependent emigration (HE). The value is lowest at the ecotones, 
especially in tiled landscapes (panel three and four), indicating spatial sorting
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however, more likely that emigration was caused by low 
fitness expectations than by random emigration.

For the emigration rate, the dispersal probability trait 
and the proportion of emigration caused by the fitness 
threshold trait, the proportion of variance explained 
by the fixed effects (dispersal strategy, landscape type, 
spatial heterogeneity) was drastically higher than that 
explained by the random effects (landscape replicate, 
times series; Table 1). However, the largest variance com-
ponent was the residuals variance with 62–78%. This was 
not surprising because the residual variance includes 

Fig. 4  Top: evolved mean emigration probability trait value d (coding for random emigration) of each patch in the last generation under random 
nearest-neighbor dispersal (NN) or patch-dependent emigration (HE) across levels of spatial heterogeneity (low–very high). Center: evolved 
mean fitness threshold values of each patch in the last generation for scenarios with patch-dependent emigration (HE) across levels of spatial 
heterogeneity (low–very high). If an individual’s expected fertility in the natal patch falls below the threshold trait, it will disperse in those scenarios 
(HE). Typical fitness values are Fertility ≈ 6.4 . Bottom: proportion of emigration events that were caused by expected fertility lower than the 
individuals’ fertility threshold (see text for details). Panel configuration and colors as in Fig. 2

Table 1  Variance explained by fixed and random effects and 
residuals (between patches) as proportion of total variance for 
four dependent variables

Dependent variable Fixed effects Random effects Residuals

Emigration rate 0.337 0.003 0.659

Dispersal probability trait 0.372 0.005 0.623

Proportion of emigra-
tion caused by fitness 
threshold trait

0.215 0.003 0.781

Fitness threshold trait 0.054 0.422 0.524
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the between-patch effects within landscapes. Given 
the spatial sorting of the dependent variables (Fig.  3), a 
high explanatory power of patch identity was expected. 
For the fitness threshold trait, residuals also explained a 
large proportion of variance, but fixed effects explained 
only 5% while random effects explained 42%. This means 
that  the trait is highly influenced by inter-patch effects, 
landscape identity and time series identity. 

Discussion
In line with previous studies, our simulations demon-
strate emergence of decreasing emigration rates as spa-
tial variance  compared to temporal variance increases. 
With increasing spatial variation, the difference in patch 
attributes between single patches and even more so 
between habitat clusters becomes more pronounced. 
Therefore, it is increasingly unlikely for individuals to 
be adapted to both the patch conditions in the natal and 
the (potential) new patch. Consequently, emigration into 
another patch becomes increasingly penalized due to 
the decrease in fitness expectations for the more or less 
maladapted immigrants (and their offspring), thus select-
ing for reduced dispersal (Hastings 1983; McPeek and 
Holt 1992). We find that the evolution of the tolerance 
trait g is dominated by the global temporal variance, but 
hardly affected by the spatial heterogeneity (so that we 
do not see selection for larger values of g in more hetero-
geneous landscapes), similar to our previous study with 
global dispersal (Sieger and Hovestadt 2020). Instead, 
selection reduces dispersal to avoid the risk and implicit 
cost of arriving in non-suitable patches. The latter effect 
might be overturned if local carrying capacities would be 
(really) small. In that case kin-competition would pro-
mote dispersal more strongly (Poethke et  al. 2007) and 
thus might induce selection for larger tolerance g.

Our simulations demonstrate, however, that landscape 
structure plays a role in how strongly selection on disper-
sal is affected by an increase in spatial patch variance. This 
was also supported by the high variance in dispersal due 
to inter-patch effects. We also note an interaction effect 
between dispersal strategy and spatial variance: lower 
emigration rates evolve under patch-dependent than 
under random emigration if spatial heterogeneity is low, 
but eventually a reversal of this pattern occurs if spatial 
heterogeneity becomes large. Here we find higher emi-
gration rates under random than under patch-dependent 
emigration. Following a similar logic, we found that in 
fractal landscapes, neighboring patches likely have a dif-
ferent environmental mean, especially if autocorrelation 
is weak. Indeed, almost no neighborhoods had zero devi-
ation between patches in fractal landscapes, whereas in 
tiled landscapes all patches of a habitat cluster share an 
identical environmental mean. This means that selection 

against dispersal with increasing global spatial variance is 
stronger in fractal landscapes since the dispersing indi-
viduals typically have a lower fertility than philopatric 
individuals. In tiled landscapes, at least in the centers 
of habitat clusters, no such penalty for leaving the natal 
patch exists since an emigrating individual likely encoun-
ters similar patch conditions as in its natal patch. The 
discrepancy between fractal and tiled landscapes is less 
prominent, however, when spatial correlation is weak. 
Here, the proportion of edge patches increases in the 
tiled landscapes (habitat clusters are smaller), so that the 
probability of a neighboring patch to be different from 
the natal patch is larger. Our findings thus confirm our 
second hypothesis that landscapes with large habitat 
clusters promote evolution of higher emigration rates, in 
particular if patches are arranged in distinct clusters of 
similar patch type. Comparable results were also found 
by several previous studies (e.g., Gros et  al. 2006; Shaw 
et al. 2014).

In addition to the inter-landscape differences of emi-
gration rate, we also observed, in line with our expecta-
tion, edge effects and spatial sorting, in particular when 
landscapes have a tiled patch structure. Because of the 
aforementioned steep habitat gradient at cluster edges 
(ecotones), lower emigration at edges is selected for as 
emigration across ecotones is severely penalized for 
locally adapted individuals. The relevance of this argu-
ment is supported by the emergent dispersal rates in 
tiled landscapes, where neighboring habitat clusters have 
rather similar environmental mean. This is for example 
visible in Fig.  1, third column, where the environmen-
tal mean of several habitat clusters is depicted by yellow 
shades (bottom right of the landscape). The similarity in 
color shows the similarity in environmental mean. At the 
same position in Fig. 3, the decline in emigration rate is 
less pronounced than at borders between habitat clus-
ters with a bigger between-habitat cluster difference. In 
such circumstances, the above-mentioned penalty is 
smaller and more emigration between habitat clusters 
takes place. Comparable empirical evidence was reported 
by Vespa et  al. (2018), who found that edge effects on 
dispersal were less pronounced when the difference 
between native forest and monoculture plantations was 
lower. They show that when plantations are new and 
therefore the difference between the plantations and the 
native forest is very high, seed dispersal into the planta-
tions decreases. With increasing plantation age, the con-
trast between the plantations and the forest diminishes, 
leading to increased seed dispersal from the forest into 
the plantations. Similarly, dispersal at treeline ecotones is 
lower in both the boreal and the alpine environment than 
in forests at lower altitude or latitude (Crofts and Brown 
2020; Kambo and Danby 2018; Ribeiro et  al. 2019). The 
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dispersal across the boundary between forest and alpine 
meadows  encompasses a more drastic change in patch 
conditions than dispersal inside the forest, where patch 
conditions are more homogeneous. For specialized for-
ests, species dispersal from forest to wooded corridors 
is also lower (Paal et  al. 2020), which is comparable to 
the situation in our simulations, since all individuals are 
locally adapted and can therefore be considered special-
ists of their native patch.

When comparing the random (NN) with the patch-
dependent (HE) emigration scenarios, we recognize that 
in most scenarios lower emigration rates emerge under 
the latter; this can—in principle—be traced to the bet-
ter ability of "informed dispersal strategies" to equalize 
fitness expectations in space (Poethke et al. 2015). How-
ever, we also find that selection on HE dispersal is less 
sensitive to the increasing spatial heterogeneity, so that at 
very high spatial heterogeneity similar (in the tiled land-
scapes) or even larger emigration rates (in fractal land-
scapes; see Fig. 2) evolve in the HE compared to the NN 
scenarios. This overall effect is mirrored by the substan-
tial sensitivity of the random dispersal trait d (see Fig. 4, 
top) to increasing spatial heterogeneity, but the nearly 
complete insensitivity of the fertility threshold trait f  
(see Fig. 4, center). As a consequence, the proportion of 
dispersal events that were induced by low fitness expec-
tation increases with increasing spatial heterogeneity, in 
particular in the fractal landscapes (see Fig. 4, bottom).

Our findings could also have implications for conser-
vation and restoration efforts. With ongoing land use 
change, sharp edged patches—that are typical for intense 
agriculture—become more prevalent (Liira et  al. 2008). 
This could mean that the trait distribution inside the hab-
itat clusters also changes, from no spatial sorting of traits, 
like in the fractal landscapes, to the spatial sorting found 
in the tiled landscapes. This change in spatial distribu-
tion of traits in habitat clusters could enhance the iso-
lation of remaining natural patches due to selection for 
decreasing dispersal probabilities at the edges of habitat 
clusters. This would be especially damaging for species 
that rely on several types of patches to thrive, for example 
anurans. It was already shown that anurans particularly 
suffer from the impact of habitat fragmentation (Homola 
et  al. 2019; Ribeiro et  al. 2019). The same mechanisms 
that inhibit dispersal across sharp ecotones could conse-
quently hinder the movement of anurans between their 
larval and adult habitats.

We also show that small-scale spatial heterogeneity 
(neighborhood relationships) has a strong influence on 
local selection resulting in substantial variance within 
scenarios. In other words, even at small spatial scales, 
evolution of dispersal strategies is already affected by 

spatial variance, often enough more than by the large-
scale differences between landscapes.

The huge influence of times series identity on the evo-
lution of the fitness threshold trait is not surprising, 
when considering the high variability in realized fitness 
in the three different time series. The impact of time 
series on fitness subsequently influences the selection for 
the fitness threshold. Time series with an overall low fit-
ness also lower the selection for a higher fitness threshold 
because the possibilities to reach this higher fitness are 
lower.

In our simulations, we only implemented short dis-
tance dispersal, i.e., dispersal to patches in direct vicinity 
of individuals’ natal patches; this implies the assump-
tion that the dispersal capabilities of species are limited 
in relation to the scale of spatial heterogeneity (possibly 
also because of selection for limited dispersal distance). 
Limited dispersal distance is prevalent in various eco-
systems and across ecotones, e.g., in halophytes in salt 
marshes (Polo-Ávila et  al. 2019), southern Atlantic for-
est trees (Vespa et al. 2018), boreal forest plants and trees 
(Paal et al. 2020; Trant et al. 2018) and anurans (Ribeiro 
et  al. 2019). However, rare long-distance dispersal is 
important the colonization of new habitat, e.g., in eastern 
larch (Larix laricina, Trant et al. 2018), salt marsh plants 
(Polo-Ávila et al. 2019) and lesser prairie-chicken (Tym-
panuchus pallidicinctu, Earl et al. 2016). It was also con-
sequential in the speciation of neotropical lizards (Sheu 
et  al. 2020). In a previous study (Sieger and Hovestadt 
2020), we showed that long-distance (global) dispersal 
can lead to bet-hedging benefits—in particular for indi-
viduals adapted to extreme and rare patches—against the 
effects of temporal variance, when the spatial variation of 
a landscape is high. In the current simulations, there is 
little selection of this sort on dispersal because short dis-
tance dispersal typically takes individuals to rather simi-
lar patches; bet-hedging benefits could possibly emerge 
by dispersing across distinct patch borders, but other 
than in our previous study this is not fundamentally more 
likely to happen for individuals adapted to extreme and 
rare patches. It may thus be a fruitful approach in future 
simulations to implement dispersal with an evolving dis-
persal kernel or dispersal switching between short- and 
long-distance dispersal. It could be particularly inter-
esting to create simulations that combine random local 
with patch or fitness-dependent long-distance disper-
sal: Searching for a very different—and usually distant—
patch could be favorable if the natal patch becomes very 
unsuitable for the individuals’ phenotype under the con-
ditions of an extreme year. Such emigration strategies 
could be coupled with habitat-matching immigration to 
enable individuals to assess their expected performance 
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in potential future patches and choose the most suitable 
one (cf. Camacho et al. 2020).

The presented simulation scenarios could additionally 
be enhanced by including several other aspects that were 
not included. In our simulations, no sexual reproduction 
took place, possibly slowing down the emergence of opti-
mal trait combinations due to the lack of recombination. 
It was shown that sexual reproduction can be an impor-
tant aspect in withstanding climatic stress. Trant et  al. 
(2018), for example, show that in black spruce sexual 
reproduction adapts faster to climatic conditions than 
clonal reproduction. This could mean that the influence 
of spatial or temporal heterogeneity on the evolution of 
the environmental niche and dispersal could change if 
sexual reproduction were to be included. We also did not 
consider the other two phases of dispersal, immigration 
and establishment, which also play an important role in 
colonization of new habitat. It was, e.g., shown that suc-
cessful establishment was the key factor for successful 
dispersal at treeline ecotones (Crofts and Brown 2020; 
Kambo and Danby 2018; Paal et al. 2020). In our model 
individuals that emigrate either immediately die or suc-
cessfully immigrate and establish, the risks of all stages 
of dispersal are implicitly included. The evolution of the 
environmental niche and dispersal could of course also 
be influenced by competition with or facilitation by other 
species, which was not accounted for in our study. Vespa 
et  al. (2018) argue that the increased dispersal of forest 
tree species into plantations with increasing age of the 
plantations is most likely due to the return of bats and 
birds into the plantations and surrounding forest, which 
facilitate the dispersal of more diverse seeds. Neverthe-
less, our simulations suggest that there is also selection 
against dispersal at ecotones independent of possible 
mechanistic limitations.

Conclusions
Overall, we show that the landscape structure is para-
mount in the evolution of dispersal, especially when 
considering the differing degrees of spatial variance com-
pared to temporal variance, but also when accounting 
for the patterns in which habitat is distributed across 
the landscape. With the ongoing land use change more 
research into this topic could also help shed light on the 
difficulties species might face under the change from 
landscapes characterized by gradual ecotones to land-
scapes with sharp edged ecotones, as they particularly 
occur in agricultural and urban settings.
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