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Abstract 

Background:  The introduction of broadleaved tree species in monoculture larch plantations to establish mixed plan-
tations is a feasible way to improve soil properties. However, our understanding of how mixed plantations of larch and 
broadleaved tree species affect soil properties, particularly microbial community structures and functions, remains 
limited. We compared three paired monoculture larch (Larix gmelinii) and mixed [L. gmelinii–Fraxinus mandshurica (a 
dominant broadleaved species)] plantations to investigate the effect of a larch–broadleaved tree species combina-
tion on the carbon (C) and nitrogen (N) content, abundance and composition of microbial communities, and enzyme 
activities associated with litter and soil.

Results:  The bacterial abundance in the litter, soil N availability, pH and electronic conductivity were significantly 
higher in the mixed-species plantation in comparison with those of the monoculture plantation. However, in the litter 
of mixed-species plantation, the relative levels of Agaricomycetes fungi were lower than those of the monoculture 
plantation, indicating that soil fungal communities were affected more than bacterial communities. In contrast, soil 
in the mixed-species plantation showed increased exoglucanase and N-acetyl-β-glucosaminidase activities. How-
ever, the C and N levels, δ13C and δ15N values, and fungal abundance in litter and soil were not significantly different 
between the monoculture and mixed-species plantations.

Conclusions:  Our findings suggest that fungal community compositions and enzyme activities are sensitive to the 
introduction of broadleaved tree species into larch plantations. Thus, these parameters can be used as important 
indicators to evaluate the effects of tree species selection on soil restoration.
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Introduction
The total area of monoculture and mixed-species planta-
tions in China is the largest of any nation globally, cov-
ering 69.3 million ha in 2014. Approximately 50% of the 
country’s tree plantations are coniferous monocultures 

(State Forestry Administration 2014). However, in com-
parison with natural forests, the monoculture conifer-
ous plantations affect forest ecological services, such 
as decreasing above- and below-ground biodiversity, 
causing soil acidification, and reducing soil carbon (C), 
available nitrogen (N), and phosphorus (P) levels (Yang 
et al. 2010, 2013). The introduction of native tree species 
to coniferous stands may restore forest ecological ser-
vices. For example, mixed forest stands could improve 
soil C sequestration and biodiversity (Wardle et al. 2004; 
Brassard et  al. 2011; Xu et  al. 2021). Soil microbes are 
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important components of soil that can affect C and nutri-
ent cycling in forest ecosystems (Bohlen et  al. 2001). 
Furthermore, the compositions and activities of soil 
microbial communities are more sensitive to changes in 
forest composition than soil C and nutrient alterations 
(Pei et al. 2016; Gunina et al. 2017). However, only a few 
studies have focused on changes in microbial communi-
ties occurring in mixed plantations in temperate forest 
ecosystems (Thoms et al. 2010). Therefore, it is essential 
to understand the differences in the compositions and 
functions of microbial communities, as well as their rela-
tionships with soil properties in monoculture and mixed 
plantations.

Soil microorganisms are known as essential compo-
nents of soil function (Harris 2009). Urbanová et  al. 
(2015) reported that microbial community composition 
was determined by tree species. Tree species composi-
tions affect microbial communities directly through litter 
and root quality and nutrient uptake, as well as indirectly 
by altering soil properties (Bach et al. 2010; Huang et al. 
2013; Liu et  al. 2019). Furthermore, distinct microbial 
communities are found in the soils of broadleaved and 
coniferous tree species (Weand et  al. 2010; Zhang et  al. 
2021). Specifically, soil microbial communities are less 
abundant and active in pine forests than in deciduous 
forests in temperate regions (Chodak et al. 2016). There-
fore, understanding how plantations with monoculture 
coniferous tree species and those with a mix of conifer-
ous and broadleaved tree species affect soil microbial 
communities may help to develop suitable forest com-
position management strategies and enhance sustainable 
plantation productivity.

Microorganisms in soil produce extracellular enzymes 
to degrade large, insoluble macromolecules, allowing 
microbial communities to acquire nutrients and energy. 
Thus, soil enzymes can reflect the microbial functional-
ity affecting C and nutrient cycling (Kaiser et  al. 2010). 
In general, β-glucosidases, proteases, N-acetyl-β-
glucosaminidases, and phosphatases are crucial enzymes 
in C and nutrient cycles in soil. These enzymes can sen-
sitively reflect changes in soil properties (Trasar-Cepeda 
et  al. 2008; Cheeke et  al. 2017). For instance, compared 
with soils of native tree species, invasive N-fixing spe-
cies (Falcataria moluccana) can dramatically alter the 
activities of β-glucosidase and phosphatase (Allison et al. 
2006). These changes in soil enzyme activities may be 
related to microbial community structures that mainly 
result from altered fungal communities (Burke et al. 2011; 
Barbi et  al. 2016). Monoculture and mixed plantations 
are characterized by different levels of litter quality that 
vary with tree species. These differences in litter qualities 
between monoculture and mixed plantations may affect 
microbial community structures and functions.

Larch (Larix spp.) is an important tree species used for 
timber in temperate regions throughout Asia. Monocul-
ture larch plantations exhibit lower abundance, activity 
of soil microbial community, and soil C sequestration, 
in comparison with adjacent natural forests (Yang et  al. 
2013; Zhang et al. 2017). In this study, we compared soil 
chemical properties and the compositions and functions 
of the soil microbial communities of L. gmelinii planta-
tions and adjacent mixed-species plantations of L. gmeli-
nii and Fraxinus mandshurica. We hypothesized that 
compared with monoculture plantations, mixed planta-
tions can alter microbial community compositions, and 
the changes in microbial communities would be associ-
ated with distinct enzyme activities and soil chemical 
properties.

Materials and methods
Site description
The experiment was carried out at the Maoershan Exper-
imental Station (45° 21′–45° 25′ N, 127° 30′–127° 34′ E) 
located in Heilongjiang Province, China. The local par-
ent rock material is composed of granite bedrock, and 
the soil under study is a Hap-Boric Luvisol (Gong et al. 
1999). The local climate is a continental monsoon climate 
with warm summers and cold winters. The mean annual 
temperature is 2.8  °C and the mean annual rainfall is 
approximately 700 mm (Wang et al. 2006).

Our study examined two plantations: monoculture L. 
gmelinii plantation (monoculture plantation) and adja-
cent mixed tree species of L. gmelinii and F. mandshu-
rica plantation (mixed-species plantation). These two 
plantations were planted in 1986 with a planting grid of 
1.5–2.0 m. The mixed-species plantation is composed of 
line-mixed tree species with three rows of F. mandshu-
rica × five rows of L. gmelinii. In this study, three paired, 
an independent monoculture plantation, and an adjacent 
mixed-species plantation were randomly selected. Thus, 
there were six plots in total, and each plot was 600 m2 
(30 m in length and 20 m in width). In the year 2015, lit-
ter layers were 2.0–4.6  cm and 2.4–4.0  cm thick in the 
monoculture mixed-species plantations, respectively.

Litter and soil sampling
Aboveground litter and soil samples were collected in 
August 2015. To eliminate the edge effects, the sampling 
area was established within a fixed plot by excluding two 
rows of trees positioned within the border. From each 
plot, 15 litter samples (subplot: 20 cm × 20 cm) and soil 
cores (5 cm in diameter) were obtained. Specifically, soil 
samples were collected halfway between the L. gmeli-
nii and F. mandshurica rows of the mixed plantations. 
Thereafter, the soil samples were divided into 0–10, 
10–20 and 20–30  cm layers. Fifteen litter or soil cores 
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collected from the same layer in each plot were mixed 
to form a composite sample. In the laboratory, the litter 
samples were cut and sieved through a 2-mm mesh after 
removing visible root residues. Soil samples were also 
passed through a 2-mm mesh and separated into four 
parts. The first part was stored at 4 °C for the analyses of 
soil enzyme activity, NH4

+-N and NO3
−-N. The second 

part was frozen at − 20  °C for subsequent DNA extrac-
tion. The first and second parts of soil samples were ana-
lyzed within one week after soil sampling. The third part 
was air-dried for analyses of soil pH and electrical con-
ductivity. The remaining samples were sieved through a 
0.15-mm screen for the measurement of soil C, N, δ13C, 
and δ15N values. The basic soil properties are presented 
in Table 1.

Soil chemical properties
The C and N concentrations, as well as δ13C and δ15N val-
ues, were determined using an elemental analyzer cou-
pled with an isotope ratio mass spectrometer (IsoPrime 
Ltd., Stockport, UK). NH4

+-N and NO3
−-N were 

extracted with 2 M KCl and quantified using an autoana-
lyzer (AutoAnalyzer III, Germany). Soil pH and electrical 
conductivity were measured with a pH/electrical conduc-
tivity meter in a soil-to-water slurry at 1:2.5 (w/v).

Soil enzyme activities
The activities of five soil enzymes (phenol oxidase, exo-
glucanase, β-glucosidase, N-acetyl-β-glucosaminidase, 
and acid phosphatase) were used to assess the micro-
bial community functioning. The phenol oxidase activ-
ity was determined by incubating soil or litter with 

L-3,4-dihydroxyphenylalanine (DOPA) and quantifying 
the oxidized reaction product. Specifically, we mixed 
0.5 g of fresh soil (or 0.2 g of fresh litter) in 4 ml of 10 mM 
DOPA and 3  ml of 50  mM sodium acetate buffer (pH 
5.0). The mixture was then shaken for 40  min at 25  °C 
and centrifuged. The absorbance of the filtrate was deter-
mined at 460  nm (Saiya-Cork et  al. 2002). For exoglu-
canase, β-glucosidase, N-acetyl-β-glucosaminidase, and 
acid phosphatase, soil or litter samples were added to 
4 ml of sodium acetate buffer (50 mM, pH 5.0) and 1 ml 
of the p-nitrophenyl-β-d-cellobioside, p-nitrophenyl-
β-d-glucopyranoside, N-acetyl-β-glucosaminide, and 
p-nitrophenol phosphate substrate, respectively (except 
when measuring acid phosphatase activity, for which 
0.2  ml of toluene was used). Subsequently, the samples 
were incubated at 37  °C for 1 or 2  h, depending on the 
substrate used. At the end of the incubation period, 1 ml 
of CaCl2 (0.5 M) and 4 ml of NaOH (0.5 M) were added 
to terminate the reaction. The soil slurry was then centri-
fuged and measured at 410 nm (Tabatabai 1994; Parham 
and Deng 2000). Enzyme activities were also assayed for 
three blanks and three substrate controls.

Microbial community analysis
Each litter and soil sample was extracted using the Pow-
erSoil® DNA Isolation Kit (MoBio Laboratories, Carls-
bad, Inc., CA, USA). Duplicate DNA extractions were 
performed for each litter or soil sample and pooled. The 
eluted DNA quality was determined via agarose gel elec-
trophoresis and then stored at − 20  °C. Real-time PCR 
assays of bacterial and fungal communities were ana-
lyzed using a LightCycler® 96 System (Roche, Germany). 

Table 1  The chemical properties in the litter and soil of the monoculture and mixed-species plantations

Mean values for n = 3 are presented. PL, monoculture L. gmelinii plantation; LF, mixed L. gmelinii–F. mandshurica plantation
* Represents significant differences between the monoculture and mixed plantations at the P < 0.05 level

Forest type Total C (g 
kg−1)

Total N (g 
kg−1)

C:N δ13C (‰) δ15N (‰) Ammonium 
(mg kg−1)

Nitrate (mg 
kg−1)

pH Electrical 
conductivity 
(dS m−1)

Litter

 PL 370.4 (15.0) 19.9 (0.6) 18.6 (0.3)* − 28.4 (0.05) 1.34 (0.15) nd nd nd nd

 LF 370.1 (3.2) 22.5 (0.4) 16.6 (0.1) − 28.1 (0.05) 1.11 (0.17) nd nd nd nd

0–10 cm soil layer

 PL 93.5 (2.1) 8.6 (0.1) 10.9 (0.1) − 26.1 (0.03) 6.32 (0.07) 1.66 (0.31) 76.1 (7.8) 5.22 (0.07) 0.27 (0.02)

 LF 101.9 (6.7) 9.5 (0.5) 10.8 (0.2) − 26.3 (0.21) 5.84 (0.19) 1.89 (0.14) 91.5 (3.8) 5.90 (0.12)* 0.34 (0.02)

10–20 cm soil layer

 PL 49.1 (1.1) 5.4 (0.1) 9.1 (0.1) − 24.9 (0.01) 8.24 (0.05) 0.86 (0.08) 22.1 (0.3) 5.78 (0.05) 0.12 (0.01)

 LF 54.1 (3.3) 5.8 (0.3) 9.3 (0.1) − 25.2 (0.12) 7.91 (0.23) 1.38 (0.04)* 30.8 (1.0)* 5.89 (0.11) 0.15 (0.01)*

20–30 cm soil layer

 PL 32.8 (0.3) 3.8 (0.1) 8.6 (0.1) − 24.5 (0.02) 8.70 (0.04) 1.04 (0.06) 11.6 (1.2) 5.80 (0.02) 0.07 (0.01)

 LF 33.2 (1.4) 3.8 (0.2) 8.7 (0.1) − 24.6 (0.03) 8.62 (0.11) 1.91 (0.54) 16.1 (1.7) 5.92 (0.01) 0.09 (0.01)
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Bacterial 16S ribosomal RNA (rRNA) and fungal 18S 
rRNA genes were quantified using the primer pair 
BAC338F/BAC805R and the probe BAC516F (Yu et  al. 
2005; Liu et al. 2012), respectively. Real-time PCR assays 
of bacteria and fungi were performed in a 20-μl reac-
tion volume using Premix Ex Taq™ and SYBR® Premix 
Ex Taq™ II (Takara, Japan), respectively. For each sam-
ple, three real-time PCR assays were performed and then 
the estimated copy values were averaged. For standard 
preparation, amplicons of each targeted gene were cloned 
with the pMDTM18-T vector (Takara, Japan) and trans-
formed into Escherichia coli TOP10. Plasmids containing 
the respective targeted gene were extracted from clones 
using the MiniBEST Plasmid Purification Kit Ver. 4.0 
(Takara, Japan) and linearized with a restriction enzyme. 
The plasmid DNA concentration was measured with a 
Nanodrop 2000 UV-Vis Spectrophotometer (Thermo 
Scientific). Data are shown as bacterial 16S rRNA and 
fungal 18S rRNA gene copy values per gram of dry 
weight soil/litter.

We used the primers ITS3/ITS4 to amplify the ITS2 
region of the fungal rDNA and the primers 341F/806R to 
amplify V3–V4 hypervariable regions of the bacterial 16S 
rDNA (White et al. 1990; Takai and Horikoshi 2000). The 
cycling conditions involved initial denaturation at 98  °C 
for 1 min followed by 30 cycles with denaturation at 98 °C 
for 10  s, annealing for 30  s at 50  °C, and extension for 
1 min at 72 °C, with a final extension for 5 min. Negative 
controls were included in the bacterial and fungal PCRs 
to detect contamination, and all PCRs remained contam-
inant free. Thereafter, PCR products were purified using 
the GeneJET Gel Extraction Kit (Thermo Scientific). 
Sequencing libraries were generated using the TruSeq® 
DNA PCR-Free Sample Preparation Kit (Illumina, USA) 
and the amplicons were subjected to sequencing on an 
Illumina HiSeq2500 platform.

Richness and diversity levels were calculated using the 
operational taxonomic units (OTUs)-based approach 
at the 0.03 level. Richness indices, including the abun-
dance of observed species and Chao-1, were calculated 
to estimate the number of species or OTUs and measure 
taxonomic alpha diversity levels. Diversity was estimated 
using Simpson and Shannon diversity indices. Both 
bacterial and fungal sequences were submitted to the 
National Center for Biotechnology Information (NCBI) 
(SRP131257 and SRP131210, respectively).

Statistical analyses
All reported errors are standard errors with three sam-
ple replicates for each mean. Statistical analysis was car-
ried out using SPSS 19.0. We used one-way analysis of 
variance (ANOVA) with Tukey’s HSD test to determine 
the significant differences in litter and soil chemical 

properties and enzyme activities between monoculture 
and mixed-species plantations (P < 0.05). The Mantel test 
was conducted to assess the relationships between the 
soil properties and microbial community composition 
in each soil layer using the R software package (http://​
www.r-​proje​ct.​org). Principal component analysis (PCA) 
was used to distinguish between microbial community 
compositions based on two forest types (Canoco 5.0).

Results
Chemical properties of litter and soil in monoculture 
and mixed plantations
Compared with the litter from the L. gmelinii planta-
tion, the C/N ratio was significantly lower in the mixed-
species plantation litter. The NH4

+-N and NO3
−-N levels 

increased by 39.6% and 60.5%, respectively, in the 10–20 
cm soil layer of the mixed-species plantation compared 
to those of the monoculture plantation (Table 1). Soil pH 
and electronic conductivity also increased in the mixed 
plantation. In contrast, there were no significant differ-
ences in total C and N, as well as δ13C and δ15N values 
between the monoculture plantation and mixed-species 
plantation. Soil C and N contents ranged from 93.5–
101.9 g kg−1 and 8.6–9.5 g kg−1 in the 0–10 cm soil layer, 
respectively. The C and N content and the C/N ratio 
decreased with soil depth in both the monoculture plan-
tation and mixed-species plantation, whereas the δ13C 
and δ15N values increased with soil depth.

Enzyme activities of litter and soil in monoculture 
and mixed plantations
The enzyme activities of the mixed-species plantation 
were different than those of the monoculture plantation 
(Fig.  1). In the litter, β-glucosidase activities increased 
by 32.1%, whereas the activities of phenol oxidase, exo-
glucanase, N-acetyl-β-glucosaminidase, and acid phos-
phatase did not significantly change in the mixed-species 
plantation. It should be noted that in the mixed planta-
tion, changes in soil enzymes were mainly noted in the 
0–10 cm layer. Specifically, the activities of exoglucanase 
and N-acetyl-β-glucosaminidase increased by 51.0% and 
50.8%, respectively, in the mixed plantation, whereas 
the activities of phenol oxidase, β-glucosidase, and acid 
phosphatase were similar in both the monoculture and 
mixed-species plantations. All the enzyme activities 
decreased with soil depth.

Bacterial and fungal communities of litter and soil 
in monoculture and mixed plantations
Total bacterial abundances observed in the litter were 
significantly higher for the mixed-species plantation 
than for the monoculture plantation, whereas total 
fungal abundances in litter did not significantly differ 

http://www.r-project.org
http://www.r-project.org
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between the monoculture and mixed-species planta-
tions. In addition, no differences were found in soil bac-
terial and fungal abundances between the monoculture 
and mixed plantations (Fig.  2). In general, there was 
a reduction in bacterial and fungal abundances with 
increasing soil depth.

A total of 1107529 bacterial sequences and 1210558 
fungal sequences were obtained from the 24 samples, 
including 6 litter samples and 18 soil samples. These 
sequences were grouped into 7113 OTUs of bacteria 
and 3211 OTUs of fungi at the 97% identity threshold. 
The number of observed species and calculated indices 
of Shannon diversity, Simpson diversity, and Chao-1 
richness for bacterial and fungal communities did not 
differ between the monoculture and mixed-species 

plantations, except for the Simpson diversity values of 
the 10–20 cm soil depth layer (Table 2).

The dominant phyla of bacteria identified in litter and 
soil included Proteobacteria, Acidobacteria, Verrucomi-
crobia, Bacteroidetes, and Gemmatimonadetes. Gener-
ally, the relative abundances of the phyla Proteobacteria 
and Verrucomicrobia decreased with soil depth, whereas 
Acidobacteria were most abundant in the 0–10 cm soil 
layer (Fig. 3). The levels of the rare bacterial phylum AD3 
were significantly higher in the mixed plantation than in 
the monoculture plantation in the 0–10 cm and 10–20 
cm soil layers. A PCA based on the abundances of bac-
terial genera showed that litter and soil samples drawn 
from the monoculture plantation were separated from 
the mixed-species plantation (Fig. 4). The first two PCA 
axes could explain 54.7% of the variance in litter and soil 
layers.

Regarding the compositions of fungal communities, 
both litter and soil were dominated by Sordariomycetes, 
Leotiomycetes, Agaricomycetes, and Dothideomycetes. 
Furthermore, the relative abundance of Agaricomycetes 
was significantly higher in the monoculture plantation 
than in the mixed-species plantation (Fig. 3). Less abun-
dant classes, such as Tremellomycetes, were also signifi-
cantly affected by the mixed plantation. In the litter and 
soil layers, the PCA analysis could not distinguish the 
fungal community composition from the monoculture 
larch and mixed plantations (Fig. 4).

Mantel tests were used to assess the relationships 
between soil properties and microbial community 
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composition (Table  3). In the litter layer, only phenol 
oxidase activity (r = 0.770, P = 0.006) displayed positive 
relationships with bacterial community composition. In 
the 0–10 cm soil layer, soil total C (r = 0.564, P = 0.021) 
and N (r = 0.500, P = 0.025) showed significant positive 
correlation with bacterial community composition. Fur-
thermore, the activities of N-acetyl-β-glucosaminidase 
(r = 0.315, P = 0.044) and phenol oxidase (r = 0.695, 
P = 0.007) were significantly correlated with fungal com-
munity composition. In the 10–20 cm soil layer, exoglu-
canase activity (r = 0.661, P = 0.019) was also significantly 
correlated with fungal community composition. In the 
20–30  cm soil layer, the Mantel tests showed soil total 
C (r = 0.673, P = 0.031) and N (r = 0.808, P = 0.011) 
as being positively correlated with fungal community 
composition.

Discussion
This study led to two important findings. Firstly, we found 
that soil C and N levels did not differ between mono-
culture and mixed plantations. The high initial C and 
N contents of soils in the study area may be responsible 
for the absence of C and N content changes observed in 
the mixed plantation. Secondly, we found no differences 
in total fungal abundance between the two plantations. 
However, changes in fungal community compositions 
and enzyme activities were observed in the mixed plan-
tation. Our results suggest that fungal community com-
positions and hydrolytic enzyme activities in mixed 
plantations could be used as important parameters for 
assessing soil restoration in temperate forest ecosystems.

Table 2  Comparison of species richness and alpha diversity indices of bacterial and fungal communities between the monoculture 
and mixed-species plantations

Mean values for n = 3 are presented. PL, monoculture L. gmelinii plantation; LF, mixed L. gmelinii–F. mandshurica plantation
* Represents significant differences between the monoculture and mixed plantations at the P < 0.05 level

Forest type Bacterial community Fungal community

Observed 
species

Shannon 
diversity

Simpson 
diversity

Chao-1 
richness

Observed 
species

Shannon 
diversity

Simpson 
diversity

Chao-1 
richness

Litter

 PL 2942 (26) 9.40 (0.14) 0.991 (0.004) 3343 (27) 951 (20) 6.66 (0.21) 0.973 (0.004) 1186 (63)

 LF 2854 (46) 9.58 (0.09) 0.996 (0.001) 3245 (55) 901 (96) 6.55 (0.46) 0.968 (0.010) 1099 (106)

0–10 cm soil layer

 PL 2835 (108) 9.40 (0.11) 0.994 (0.001) 3278 (136) 939 (65) 6.67 (0.06) 0.970 (0.005) 1116 (114)

 LF 2915 (141) 9.61 (0.13) 0.996 (0.001) 3292 (149) 953 (82) 6.88 (0.26) 0.975 (0.005) 1082 (89)

10–20 cm soil layer

 PL 2801 (66) 9.39 (0.11) 0.994 (0.001) 3229 (80) 986 (47) 6.72 (0.05) 0.966 (0.003) 1211 (99)

 LF 2983 (78) 9.60 (0.06) 0.995 (0.001) 3392 (47) 1017 (69) 7.04 (0.19) 0.977 (0.003)* 1220 (120)

20–30 cm soil layer

 PL 3055 (99) 9.64 (0.20) 0.995 (0.001) 3508 (104) 1024 (25) 6.87 (0.28) 0.972 (0.010) 1356 (36)

 LF 2951 (92) 9.47 (0.12) 0.993 (0.001) 3363 (65) 1057 (86) 6.44 (0.94) 0.907 (0.076) 1263 (122)
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Fig. 3  Relative abundance of (a) bacterial phyla and (b) fungal 
classes of forest litter and soil of the monoculture Larix gmelinii 
plantation (PL) and mixed L. gmelinii–Fraxinus mandshurica plantation 
(LF). Values are presented as means ± SE (n = 3)
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Effects of mixing larch and broadleaved tree species 
on the chemical properties of litter and soil
In a forest ecosystem, tree species affect soil chemical 
properties through variations in leaf litter quality and 
fine root biomass (Diers et  al. 2021). An earlier study 
demonstrated that coniferous and broadleaved forests 
can accumulate more C in soil than evergreen broad-
leaf forests, based on a 1974 soil sample database (Chiti 
et  al. 2012). Furthermore, compared to monoculture 
plantations, afforestation with a mixture of tree species, 
especially that with N-fixing species, has been found 
to increase the levels of soil C and N contents (Huang 
et al. 2014; Liu et al. 2017). Our results show that total 
C and N contents do not change in the forest litter 

and soil of monoculture and mixed-species plantation 
stands. The higher initial levels of soil C and N contents 
observed may result in lower accumulation of C and 
N in the soil after afforestation (Gilmore and Boggess 
1963).

Mixed-species plantations exhibited higher levels 
of soil ammonium (NH4

+) and nitrate (NO3
−) than 

L. gmelinii plantations. This result is in line with the 
findings of other studies from subtropical and tropical 
areas (Rachid et  al. 2013; Yu et  al. 2015). Importantly, 
mixed tree species can increase soil N availability and 
improve soil ammonification, nitrification rates, and 
N mineralization, thereby accelerating N cycling in 
the upper 10  cm layer (Kooch and Bayranvand 2017). 
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Fig. 4  Compositions of (a) bacterial and (b) fungal communities in forest litter and soil of the monoculture Larix gmelinii plantation (PL) and mixed 
L. gmelinii–Fraxinus mandshurica plantation (LF), as analyzed via principal component analysis. Circular shape, L. gmelinii plantation; diamond shape, 
mixed L. gmelinii–F. mandshurica plantation. Green, litter; blue, 0–10 cm soil layer; red, 10–20 cm soil layer; black, 20–30 cm soil layer

Table 3  The correlations (r value) and significance (P value) determined by the Mantel test between the soil properties and microbial 
community

NAG N-acetyl-β-glucosaminidase, EC electrical conductivity

The bold font represents significant correlations between microbial community and soil properties at the P < 0.05 level

Soil 
properties

Litter layer 0–10 cm soil layer 10–20 cm soil layer 20–30 cm soil layer

Bacteria Fungi Bacteria Fungi Bacteria −  Bacteria Fungi

Total C 0.481 (0.085) 0.002 (0.367) 0.564 (0.021) − 0.035 (0.504) 0.179 (0.214) −  0.136 (0.308) 0.673 (0.031)
Total N 0.343 (0.118) − 0.014(0.490) 0.500 (0.025) − 0.043 (0.482) 0.154 (0.196) − 0.121 (0.536) 0.351 (0.190) 0.808 (0.011)
Exoglucanase − 0.336 (0.790) − 0.298 (0.832) 0.413 (0.092) 0.485 (0.069) − 0.195 (0.763) 0.661 (0.019) 0.012 (0.504) 0.012 (0.446)

β-Glucosidase − 0.563 (0.956) − 0.442 (0.928) 0.406 (0.110) 0.148 (0.335) − 0.090 (0.392) − 0.058 (0.460) − 0.403 (0.951) − 0.193 (0.819)

NAG − 0.023 (0.511) − 0.236 (0.790) 0.140 (0.251) 0.315 (0.044) 0.433 (0.139) − 0.041 (0.457) − 0.297 (0.768) − 0.401 (0.896)

Acid phos-
phatase

− 0.296 (0.818) − 0.223 (0.781) − 0.110 (0.588) − 0.164 (0.632) − 0.291 (0.828) − 0.058 (0.503) − 0.296 (0.742) − 0.301 (0.826)

Phenol oxidase 0.770 (0.006) 0.305 (0.175) 0.161 (0.282) 0.695 (0.007) − 0.133 (0.549) − 0.081 (0.524) − 0.046 (0.525) 0.014 (0.507)

pH nd nd 0.203 (0.197) 0.077 (0.393) − 0.061 (0.528) − 0.010 (0.476) 0.194 (0.233) − 0.010 (0.500)

EC nd nd 0.103 (0.319) 0.249 (0.182) 0.229 (0.149) − 0.090 (0.610) 0.133 (0.346) 0.172 (0.310)

Nitrate nd nd 0.161 (0.272) 0.242 (0.197) − 0.003 (0.447) 0.258 (0.103) 0.067 (0.397) − 0.023 (0.521)

Ammonium nd nd − 0.377 (0.928) 0.361(0.167) − 0.126 (0.668) 0.228 (0.169) 0.204 (0.415) 0.376 (0.288)
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Fine root biomass may also affect soil N availability. 
Mei et  al. (2008) reported that the fine root biomass 
was positively correlated with soil N availability in the 
same study area, and the fine root biomass was higher 
in F. mandshurica plantations than that in L. gmelinii 
plantations. Although soil available N differed between 
the monoculture and mixed-species plantations, fur-
ther research on soil available N in different seasons, 
and with different soil N mineralization, and fine root 
biomass in monoculture and mixed-species plantations 
would help evaluate the generality of our results. In 
agreement with the findings of previous mixed planta-
tion studies, the soil pH level in the 0–10 cm layer was 
higher in mixed-species plantations compared to that 
observed in monoculture plantations. This decrease in 
soil acidification likely resulted from changes in litter 
quality and root exudates and increased the uptake of 
cations by trees (Gunina et al. 2017). Therefore, affores-
tation with mixed tree species can alleviate soil acidifi-
cation and increase N availability, although it does not 
increase the C and N supplies in soils.

In our study, soil δ13C and δ15N levels increased with 
soil depth, which is in line with the results reported in 
other studies of forest ecosystems (Hobbie and Ouimette 
2009; Guillaume et  al. 2015; Gautam et  al. 2017). Dijk-
stra et  al. (2006) found that the levels of δ13C and δ15N 
in microbial products gradually increase with soil forma-
tion. Although we did not find differences in the δ13C and 
δ15N levels in soils between the monoculture and mixed 
plantations, our results showed that soil enzyme activ-
ity levels are higher in mixed-species plantations than in 
monoculture plantations. This finding may be because 
the higher δ13C and δ15N levels in the litter or roots of 
monoculture plantations tend to mask microbial frac-
tionation processes, compared to those in the mixed-spe-
cies plantations.

Effects of mixing larch and broadleaved tree species 
on microbial community composition and enzyme activity
Tree species are an important factor affecting the activ-
ity of extracellular enzymes. In general, compared 
to those of the monoculture plantation, the activity 
levels of β-glucosidase, exoglucanase, and N-acetyl-
β-glucosaminidase were higher in the mixed planta-
tion forest litter and soil. In previous studies on mixed 
tree species, elevated enzyme activity levels have been 
found (Allison et  al. 2006; Singh et  al. 2012). Moreover, 
microbial enzymes in the litter and soil of monoculture 
and mixed-species plantations differed. For example, 
β-glucosidase activity increased in the litter but not in 
the soil of the mixed plantation, whereas the activities of 
exoglucanase and N-acetyl-β-glucosaminidase increased 
in the topsoil but not in the forest litter of the mixed 

plantation. β-Glucosidase is known to catalyze com-
plex cellulose into simple sugars (Esen 1993). Changes 
in β-glucosidase activity in the litter may be related to 
shifts in the composition of the fungal community. Fungi 
may be more efficient than bacteria at acquiring avail-
able C and N or incorporating C and N into biomass. 
Given that N-acetyl-β-glucosaminidase is associated 
with N acquisition, an increase in N availability could 
reduce N-acetyl-β-glucosaminidase activity, depend-
ing on the forms of microbial allocation. However, both 
N-acetyl-β-glucosaminidase activity and available N 
content increased, suggesting a more complex interac-
tion. Furthermore, other factors, such as soil microbial 
community alterations, may affect N availability. Rachid 
et  al. (2013) found that mixed plantations increase soil 
NO3

−-N levels through changes in N cycling genes. We 
found that soil enzyme activity levels decreased with soil 
depth. This result is consistent with those of other stud-
ies reporting exponential declines in soil enzyme activity 
with forest ecosystem soil depth (Venkatesan and Sen-
thurpandian 2006; Stone et al. 2014).

The effect of mixed plantations on the composition of 
the microbial community can regulate enzyme-catalyzed 
processes. In the present study, the bacterial phyla Pro-
teobacteria, Acidobacteria and Verrucomicrobia were 
dominant in monoculture and mixed-species plantations, 
in agreement with the findings of studies in other tem-
perate forests, based on a high-throughput sequencing 
method (Li et al. 2014). We found that while the relative 
abundances of fungi at the class level were not related to 
enzyme activities, the abundances of some fungal genera 
were related. This result also indicates that enzymes serve 
as an estimate of functional community composition.

The mixed-species plantation did not alter fungal 
abundances, but it did change fungal community com-
positions. This finding is consistent with those of stud-
ies of other temperate forest ecosystems showing that 
total microbial biomass does not change depending on 
the tree species (Weand et  al. 2010). However, mixed 
plantations can increase soil bacterial and fungal bio-
mass levels, compared to those of monoculture planta-
tions in subtropical forest ecosystems (Lucas-Borja et al. 
2012; Huang et al. 2014), which suggests that tree species 
diversity plays a vital role in shaping microbial commu-
nity compositions. In addition to tree species, initial soil 
properties and environmental factors significantly affect 
microbial communities (Brockett et  al. 2012). In our 
study area, the initial levels of soil C and N content may 
have weakened the effects of tree species on soil micro-
bial communities.

Although no significant change was found in fungal 
and bacterial abundances (except for bacterial abun-
dances in the litter), microbial community compositions 
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shifted in the mixed plantation. Our hypothesis that a 
mixed plantation can alter the structures and functions of 
microbial communities was confirmed. Several research-
ers have demonstrated that the structures of microbial 
communities are more sensitive than chemical param-
eters in response to changes in plant species (Gunina 
et  al. 2017; Pereira et  al. 2019). We observed that there 
are differences in the fungal and bacterial communities 
of forest litter and soil in monoculture and mixed-species 
plantations. Previous research has demonstrated that 
mixtures of Larix litter with broadleaved tree litter exhib-
ited higher rate of litter decomposition than monoculture 
Larix litter. Specifically, mixing Larix litter with broad-
leaved litter could change the composition and function 
of the microbial community and improve the decomposi-
tion of hemicelluloses and lignin (Zhang et al. 2019). In 
contrast, soil that was mainly composed of fungal genera 
in the mixed plantation was only marginally different 
from that in the monoculture plantation. In addition, rare 
bacterial genera significantly contributed to the observed 
structural community differences. This result indicates 
that dominant bacterial genera are not sensitive to mixed 
plantations in temperate forest ecosystems; whereas, in 
evaluating bacterial community responses, rare bacterial 
genera were found to be critical. We also found that bac-
terial and fungal abundances decreased with soil depth, 
which is consistent with the results of other studies 
(Hartmann et al. 2009; Eilers et al. 2012).

Conclusions
The mixed-species plantations can significantly change 
the compositions and functions of microbial communi-
ties, but not the C and N contents, in comparison with 
monoculture plantations. Our study demonstrates that 
fungal communities are more sensitive than bacte-
rial communities in responding to mixed plantations. 
Furthermore, compared to monoculture plantations, 
mixed-species plantations can significantly enhance 
soil available N and exoglucanase, β-glucosidase, and 
N-acetyl-β-glucosaminidase activity levels. Given that 
microorganisms are mediators of several important eco-
system functions, such as C and nutrient cycling, hav-
ing mixed plantations might affect C and nutrient pools 
in the long term. In addition, our research suggests that 
fungal community compositions and enzyme activities 
are sensitive indicators of soil properties in mixed planta-
tions that are more than 20 years old. In future, all these 
microbial properties should be considered in the selec-
tion of mixed tree species for soil restoration.
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