Adair KL, Schwartz E: Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microb Ecol 2008, 56(3):420–426.
Article
CAS
Google Scholar
Agogué H, Brink M, Dinasquet J, Herndl GJ: Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 2008, 456(7223):788–791.
Article
Google Scholar
Auguet J, Barberan A, Casamayor EO: Global ecological patterns in uncultured Archaea. ISME J 2010, 4(2):182–190.
Article
Google Scholar
Baker GC, Smith JJ, Cowan DA: Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003, 55(3):541–555.
Article
CAS
Google Scholar
Bartossek R, Nicol GW, Lanzen A, Klenk H, Schleper C: Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context. Environ Microbiol 2010, 12(4):1075–1088.
Article
CAS
Google Scholar
Bates ST, Garcia-Pichel F: A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau: their diversity and relative contribution to microbial biomass. Environ Microbiol 2009, 11(1):56–67.
Article
CAS
Google Scholar
Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N: Examining the global distribution of dominant archaeal populations in soil. ISME J 2011, 5(5):908–917.
Article
CAS
Google Scholar
Bates ST, Nash TH III, Garcia-Pichel F: Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia 2012, 104(2):353–361.
Article
CAS
Google Scholar
Belnap J: Surface disturbances: their role in accelerating desertification. Environ Monit Assess 1995, 37(1–3):39–57.
Article
CAS
Google Scholar
Belnap J, Lange OL: Biological soil crusts: structure, function, and management. Berlin, Germany: Springer Verlag; 2003.
Book
Google Scholar
Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR: Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 2011, 6(2):e16626.
Article
CAS
Google Scholar
Campbell JH, Clark JS, Zak JC: PCR-DGGE Comparison of bacterial community structure in fresh and archived soils sampled along a Chihuahuan Desert elevational gradient. Microb Ecol 2009, 57(2):261–266.
Article
CAS
Google Scholar
Cao H, Li M, Hong Y, Gu J: Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Syst Appl Microbiol 2011, 34(7):513–523.
Article
CAS
Google Scholar
Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D: Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 2003, 185(9):2759–2773.
Article
CAS
Google Scholar
Chen X, Zhu Y, Xia Y, Shen J, He J: Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 2008, 10(8):1978–1987.
Article
CAS
Google Scholar
de la Torre JR, Walker CB, Ingalls AE, Koenneke M, Stahl DA: Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 2008, 10(3):810–818.
Article
CAS
Google Scholar
Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ: Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2009, 2: 621–624.
Article
CAS
Google Scholar
Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U: Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 2012, 5(7):459–462.
Article
CAS
Google Scholar
Evans RD, Johansen JR: Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 1999, 18(2):183–225.
Article
Google Scholar
Fan F, Zhang F, Lu Y: Linking plant identity and interspecific competition to soil nitrogen cycling through ammonia oxidizer communities. Soil Biol Biochem 2011, 43(1):46–54.
Article
CAS
Google Scholar
Fernandez-Guerra A, Casamayor EO: Habitat-associated phylogenetic community patterns of microbial ammonia oxidizers. PLoS One 2012, 7(10):e47330.
Article
CAS
Google Scholar
Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 2005, 102(41):14683–14688.
Article
CAS
Google Scholar
French E, Kozlowski JA, Mukherjee M, Bullerjahn G, Bollmann A: Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl Environ Microbiol 2012, 78(16):5773–5780.
Article
CAS
Google Scholar
Fu BJ, Zhang QJ, Chen LD, Zhao WW, Gulinck H, Liu GB, Yang QK, Zhu YG: Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the Loess Plateau of China. Catena 2006, 65(1):41–48.
Article
Google Scholar
Garcia-Pichel F, Belnap J: Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 1996, 32(5):774–782.
Article
Google Scholar
Garcia-Pichel F, Lopez-Cortes A, Nubel U: Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 2001, 67(4):1902–1910.
Article
CAS
Google Scholar
Garcia-Pichel F, Johnson SL, Youngkin D, Belnap J: Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb Ecol 2003, 46(3):312–321.
Article
CAS
Google Scholar
Garcia-Pichel F, Wojciechowski MF: The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 2009, 4(11):e7801.
Article
Google Scholar
Glaser K, Hackl E, Inselsbacher E, Strauss J, Wanek W, Zechmeister-Boltenstern S, Sessitsch A: Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment. FEMS Microbiol Ecol 2010, 74(3):575–591.
Article
CAS
Google Scholar
Gleeson DB, Mueller C, Banerjee S, Ma W, Siciliano SD, Murphy DV: Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biol Biochem 2010, 42(10):1888–1891.
Article
CAS
Google Scholar
Gubry-Rangin C, Nicol GW, Prosser JI: Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 2010, 74(3):566–574.
Article
CAS
Google Scholar
Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI, Nicol GW: Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci USA 2011, 108(52):21206–21211.
Article
CAS
Google Scholar
Gundlapally SR, Garcia-Pichel F: The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 2006, 52(2):345–357.
Article
Google Scholar
Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF: Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 2006, 4(4):E95.
Article
Google Scholar
Hallin S, Jones CM, Schloter M, Philippot L: Relationship between N cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 2009, 3: 597–605.
Article
CAS
Google Scholar
Hammer Ø, Harper DA, Ryan PD: PAST: paleontological statistics software package for education and data analysis. Palaeontol Electr 2001, 4: 1–9.
Google Scholar
Hatzenpichler R: Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 2012, 78(21):7501–7510.
Article
CAS
Google Scholar
Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M: A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 2008, 105(6):2134–2139.
Article
CAS
Google Scholar
He J, Shen J, Zhang L, Zhu Y, Zheng Y, Xu M, Di H: Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 2007, 9(9):2364–2374.
Article
CAS
Google Scholar
Hocking R: Analysis and selection of variables in linear-regression. Biometrics 1976, 32(1):1–49.
Article
Google Scholar
Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F: Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol 2005, 7(1):1–12.
Article
CAS
Google Scholar
Johnson SL, Neuer S, Garcia-Pichel F: Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Environ Microbiol 2007, 9(3):680–689.
Article
CAS
Google Scholar
Jung J, Yeom J, Kim J, Han J, Lim HS, Park H, Hyun S, Park W: Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res Microbiol 2011, 162(10):1018–1026.
Article
CAS
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30(14):3059–3066.
Article
CAS
Google Scholar
Kim J, Jung M, Park S, Rijpstra WIC, Damste JSS, Madsen EL, Min D, Kim J, Kim G, Rhee S: Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ Microbiol 2012, 14(6):1528–1543.
Article
CAS
Google Scholar
Klappenbach JA, Saxman PR, Cole JR, Schmidt TM: rrndb: the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res 2001, 29(1):181–184.
Article
CAS
Google Scholar
Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA: Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 2005, 437(7058):543–546.
Article
Google Scholar
Lehtovirta LE, Prosser JI, Nicol GW: Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. FEMS Microbiol Ecol 2009, 70(3):367–376.
Article
CAS
Google Scholar
Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 2011, 108(38):1–6.
Article
Google Scholar
Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C: Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 2006, 442(7104):806–809.
Article
CAS
Google Scholar
Liu Y, Zheng Y, Shen J, Zhang L, He J: Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environ Sci Pollut Res 2010, 17(6):1237–1244.
Article
CAS
Google Scholar
Mao Y, Yannarell AC, Mackie RI: Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS One 2011, 6(9):e24750. 10.1371/journal.pone.0024750
Article
CAS
Google Scholar
Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA: Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009, 461(7266):976–979.
Article
CAS
Google Scholar
Marusenko Y, Huber DP, Hall SJ: Fungi mediate nitrous oxide production but not ammonia oxidation in aridland soils of the southwestern US. Soil Biol Biochem 2013, 63: 24–36.
Article
CAS
Google Scholar
Matsutani N, Nakagawa T, Nakamura K, Takahashi R, Yoshihara K, Tokuyama T: Enrichment of a novel marine ammonia-oxidizing archaeon obtained from sand of an eelgrass zone. Microb Environ 2011, 26(1):23–29.
Article
Google Scholar
Mosier AC, Francis CA: Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 2008, 10: 3002–3016.
Article
CAS
Google Scholar
Mosier AC, Lund MB, Francis CA: Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microb Ecol 2012, 64(4):955–963.
Article
CAS
Google Scholar
Nagy ML, Perez A, Garcia-Pichel F: The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 2005, 54(2):233–245.
Article
CAS
Google Scholar
Nannipieri P, Eldor P: The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 2009, 41(12):2357–2369.
Article
CAS
Google Scholar
Nicol GW, Prosser JI: Strategies to determine diversity, growth and activity of ammonia oxidising archaea in soil. Methods Enzymol 2011, 496: 3–34.
Article
CAS
Google Scholar
Norton JM, Alzerreca JJ, Suwa Y, Klotz MG: Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol 2002, 177(2):139–149.
Article
CAS
Google Scholar
Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C: Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 2003, 5(9):787–797.
Article
CAS
Google Scholar
Palmer MW: Putting things in even better order—the advantages of canonical correspondence-analysis. Ecology 1993, 74(8):2215–2230.
Article
Google Scholar
Park B, Park S, Yoon D, Schouten S, Damste JSS, Rhee S: Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl Environ Microbiol 2010, 76(22):7575–7587.
Article
CAS
Google Scholar
Pester M, Rattei T, Flechl S, Groengroeft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M: amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 2012, 14(2):525–539.
Article
CAS
Google Scholar
Pointing SB, Belnap J: Microbial colonization and controls in dryland systems. Nat Rev Microbiol 2012, 10(8):551–562.
Article
CAS
Google Scholar
Prosser JI, Nicol GW: Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 2012, 20(11):523–531.
Article
CAS
Google Scholar
Rotthauwe JH, Witzel KP, Liesack W: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 1997, 63(12):4704–4712.
CAS
Google Scholar
Safriel U, Adeel Z, Niemeijer D, Puigdefabregas J, White R, Lal R, Winslow M, Ziedler J, Prince S, Archer E, King C: Dryland systems. In Ecosystems and human well-being. Edited by: Hassan R, Scholes RJ, Ash N. Washington DC: Findings of the Conditions and Trends Working Group of the Millennium Ecosystem Assessment. Island Press; 2005:623–662.
Google Scholar
Santoro AE, Casciotti KL: Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. ISME J 2011, 5(11):1796–1808.
Article
CAS
Google Scholar
Schimel JP, Bennett J: Nitrogen mineralization: challenges of a changing paradigm. Ecology 2004, 85(3):591–602.
Article
Google Scholar
Schleper C, Nicol GW: Ammonia-oxidising archaea—physiology, ecology and evolution. Adv Microb Physiol 2010, 57(57):1–41.
Article
CAS
Google Scholar
Schlesinger WH: Biogeochemistry: an analysis of global change. San Diego, USA: Academic; 1997.
Google Scholar
Shen J, Zhang L, Zhu Y, Zhang J, He J: Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 2008, 10(6):1601–1611.
Article
CAS
Google Scholar
Smith AC, Koper N, Francis CM, Fahrig L: Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol 2009, 24(10):1271–1285.
Article
Google Scholar
Soule T, Anderson IJ, Johnson SL, Bates ST, Garcia-Pichel F: Archaeal populations in biological soil crusts from arid lands in North America. Soil Biol Biochem 2009, 41(10):2069–2074.
Article
CAS
Google Scholar
Stahl DA, de la Torre JR: Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 2012, 66: 83–101.
Article
CAS
Google Scholar
Strauss SL, Day TA, Garcia-Pichel F: Nitrogen cycling in desert biological soil crusts across biogeographic regions in the Southwestern United States. Biogeochemistry 2012, 108(1–3):171–182.
Article
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731–2739.
Article
CAS
Google Scholar
Ter Braak CJF: Canonical correspondence-analysis—a new eigenvector technique for multivariate direct gradient analysis. Ecology 1986, 67(5):1167–1179.
Article
Google Scholar
Tourna M, Freitag TE, Nicol GW, Prosser JI: Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 2008, 10(5):1357–1364.
Article
CAS
Google Scholar
Tourna M, Stieglmeier M, Spang A, Koenneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C: Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 2011, 108(20):8420–8425.
Article
CAS
Google Scholar
van der Heijden MGA, Bardgett RD, van Straalen NM: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 2008, 11(3):296–310.
Article
Google Scholar
Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO: Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304(5667):66–74.
Article
CAS
Google Scholar
Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir A, Hemp J, Huegler M, Karr EA, Koenneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA: Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 2010, 107(19):8818–8823.
Article
CAS
Google Scholar
Wall DH, Virginia RA: Controls on soil biodiversity: insights from extreme environments. Appl Soil Ecol 1999, 13(2):137–150.
Article
Google Scholar
Xu M, Schnorr J, Keibler B, Simon HM: Comparative analysis of 16S rRNA and amoA genes from archaea selected with organic and inorganic amendments in enrichment culture. Appl Environ Microbiol 2012, 78(7):2137–2146.
Article
CAS
Google Scholar
Ye L, Zhang T: Ammonia‒oxidizing bacteria dominates over ammonia‒oxidizing archaea in a saline nitrification reactor under low DO and high nitrogen loading. Biotechnol Bioeng 2011, 108(11):2544–2552.
Article
CAS
Google Scholar
Zeglin LH, Taylor AE, Myrold DD, Bottomley PJ: Bacterial and archaeal amoA gene distribution covaries with soil nitrification properties across a range of land uses. Environ Microbiol Rep 2011, 3(6):717–726.
Article
CAS
Google Scholar
Zhang L, Wang M, Prosser JI, Zheng Y, He J: Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 2009, 70(2):52–61.
Google Scholar
Zhang LM, Offre PR, He JZ, Verhamme DT, Nicol GW, Prosser JI: Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci USA 2010, 107(40):17240–17245.
Article
CAS
Google Scholar
Zhang X, Liu W, Bai Y, Zhang G, Han X: Nitrogen deposition mediates the effects and importance of chance in changing biodiversity. Mol Ecol 2011, 20(2):429–438.
Article
Google Scholar