Adhikari D, Barik SK, Upadhaya K (2012) Habitat distribution modeling for reintroduction of Ilex khasiana Purk, a critically endangered tree species of northeastern India. Ecol Eng 40:37–43. https://doi.org/https://doi.org/10.1016/j.ecoleng.2011.12.004
Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6):1223–1232. https://besjournals.onlinelibrary.wiley.com/doi/full/https://doi.org/10.1111/j.1365-2664.2006.01214.x
Bachman S, Moat J, Hill AW, De La Torre J, Scott B (2011) Supporting red list threat assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys 150(SI):117–126. https://doi.org/10.3897/zookeys.150.2109
Borthakur SK, Baruah PS, Deka K, Das P, Sarma B, Adhikari D, Tanti B (2018) Habitat distribution modelling for improving conservation status of Brucea mollis Wall. ex Kurz. – an endangered potential medicinal plant of Northeast India. J Nat Conserv 43:104–110. https://doi.org/10.1016/j.jnc.2018.02.010
Castaño-Santamaría J, López-Sánchez CA, Obeso JR, Barrio-Anta M (2019) Modelling and mapping beech forest distribution and site productivity under different climate change scenarios in the Cantabrian Range (North-western Spain). Forest Ecol Manage 450:117488. https://doi.org/10.1016/j.foreco.2019.117488
CEPF (2020) Critical Ecosystem Partnership Fund: biodiversity hotspots. https://www.cepf.net/our-work/biodiversity-hotspots
Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103(7):791–802
Google Scholar
Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313(5795):1958–1960. https://doi.org/. https://doi.org/10.1126/science.1129007
Article
CAS
Google Scholar
Chunco AJ, Phimmachak S, Sivongxay N, Stuart BL (2013) Predicting environmental suitability for a rare and threatened species (Lao Newt, Laotriton laoensis) using validated species distribution models. PLoS One 8:e59853. https://doi.org/10.1371/journal.pone.0059853
Conservation International (2005) Biodiversity hotspots: Himalaya. http://www.biodiversityhotspots.org/xp/Hotspots/himalaya/. Accessed 10 Oct 2019
Curtis JT, McIntosh RP (1950) The interrelations of certain analytic and synthesis phytosociological characters. Ecology 31:434–455. https://doi.org/10.2307/1931497
Danielson JJ, Gesch DB (2011) Global multi-resolution terrain elevation data 2010 (GMTED2010). US Geological Survey, USA https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm. Accessed 10 March 2020
Book
Google Scholar
Das A (1995) Diversity of angiospermic flora of Darjeeling hills. In: Pandey AK (ed) Taxonomy and biodiversity. CBS Publishers and Distributers, Delhi, pp 118–127
Google Scholar
Das J, Thapa S, Pradhan D, Thorat SS, Talukdar NC (2013) Intra-specific genetic diversity, phytochemical analysis and antioxidant activities of a potential Himalayan Swertia (Swertia bimaculata Hook. F. & Thomas.). Ind Crops Prod 49:341–347. https://doi.org/10.1016/j.indcrop.2013.05.017
Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T, Caccianiga M, Dirnböck T, Ertl S, Fischer A, Lenoir J, Svenning J, Psomas A, Schmatz D R, Silc U, Vittoz P, Hülber K (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2:619–622. https://doi.org/10.1038/nclimate1514
Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1(4):330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Article
Google Scholar
Fischer EM, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Change 5:560–564. https://doi.org/10.1038/nclimate2617
GBIF (2020) GBIF Occurrence Download. https://www.gbif.org/. Accessed 28 Apr 2020
Gebrewahid Y, Abrehe S, Meresa E, Eyasu G, Abay K, Gebreab G, Kidanamariam K, Adissu G, Abreha G, Darcha G (2020) Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecol Process 9:6. https://doi.org/10.1186/s13717-019-0210-8
Grierson AJC, Long DG (1999) Flora of Bhutan: volume II part 2. The Royal Botanic Garden of Edinburgh & The Royal Government of Bhutan, United Kingdom & Bhutan
Google Scholar
Griffies SM, Winton M, Donner LJ, Horowitz LW, Downes SM, Farneti R, Gnanadesikan A, Hurlin WJ, Lee H, Liang Z, Palter JB, Samuels BL, Wittenberg AT, Wyman BL, Yin J, Zadeh N (2011) The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J Climate 24:3520–3544. https://doi.org/10.1175/2011JCLI3964.1
Guo Q, Fu B, Shi P, Cudahy T, Zhang J, Xu H (2017) Satellite monitoring the spatial-temporal dynamics of desertification in response to climate change and human activities across the Ordos Plateau, China. Remote Sens 9:525. https://doi.org/10.3390/rs9060525
Hamid M, Khuroo AA, Charles B, Ahmad R, Singh CP, Aravind NA (2019) Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodivers Conserv 28:2345–2370. https://doi.org/10.1007/s10531-018-1641-8
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276, 15
Hoffmann AA, Rymer PD, Byrne M, Ruthrof KX, Whinam J, McGeoch M, Bergstrom DM, Guerin GR, Sparrow B, Joseph L, Hill SJ, Andrew NR, Camac J, Bell N, Riegler M, Gardner JL, Williams SE (2019) Impacts of recent climate change on terrestrial flora and fauna: some emerging Australian examples. Austral Ecol 44:3–27. https://doi.org/10.1111/aec.12674
IPCC (2014) Climate Change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team. IPCC, Switzerland
Google Scholar
Joshi P, Dhawan V (2005) Swertia chirayita - an overview. Curr Sci 89:635–640
Jueterbock A, Smolina I, Coyer JA, Hoarau G (2016) The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach. Ecol Evol 6:1712–1724. https://doi.org/10.1002/ece3.2001
Kanade R, John R (2018) Topographical influence on recent deforestation and degradation in the Sikkim Himalaya in India: implications for conservation of East Himalayan broadleaf forest. Appl Geogr 92:85–93. https://doi.org/10.1016/j.apgeog.2018.02.004
Khanum R, Mumtaz AS, Kumar S (2013) Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol 49:23–31. https://doi.org/10.1016/j.actao.2013.02.007
Kolanowska M, Konowalik K (2014) Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchid species from Southeast Asia. Biotropica 46:157–165. https://doi.org/10.1111/btp.12089
Kumar P (2012) Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodivers Conserv 21:1251–1266. https://doi.org/10.1007/s10531-012-0279-1
Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1:94–98
Google Scholar
Matteodo M, Wipf S, Stöckli V, Rixen C, Vittoz P (2013) Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ Res Lett 8(2):024043. https://doi.org/10.1088/1748-9326/8/2/024043
Article
Google Scholar
Menhinick EFA (1964) Comparison of some species diversity indices applied to samples of field insects. Ecology 45:858–868
Article
Google Scholar
Menon S, Choudhury BI, Khan ML, Peterson AT (2010) Ecological niche modeling and local knowledge predict new populations of Gymnocladus assamicus a critically endangered tree species. Endangered Species Research 11:175–181. https://doi.org/10.3354/esr00275
Mingyang L, Yunwei J, Kumar S, Stohlgren TJ (2008) Modeling potential habitats for alien species Dreissena polymorpha in continental USA. Acta Ecol Sin 28:4253–4258. https://doi.org/10.1016/S1872-2032(08)60080-3
Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT (2018) Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc Natl Acad Sci 115:2022–2025
Article
CAS
Google Scholar
Padalia H, Srivastava V, Kushwaha SPS (2014) Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: comparison of MaxEnt and GARP. Ecol Inform 22:36–43
Article
Google Scholar
Pal R, Biswas SS, Mondal B, Pramanik MK (2016) Landslides and floods in the Tista Basin (Darjeeling and Jalpaiguri Districts): historical evidence, causes and consequences. J Ind Geophys Union 20:209–215
Google Scholar
Pande HK, Arora S (2014) India’s Fifth National Report to the Convention on Biological Diversity. Ministry of Environment and Forestry, Government of India, India
Google Scholar
Pandey DK, Basu S, Jha TB (2012) Screening of different East Himalayan species and populations of Swertia L. based on exomorphology and mangiferin content. Asian Pac J Trop Biomed 2:S1450–S1456. https://doi.org/10.1016/S2221-1691(12)60436-5
Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107. https://doi.org/10.1016/j.baae.2007.01.005
Pearson RG (2007) Species’ distribution modeling for conservation educators and practitioners. Synth Am Mus Nat Hist 50:54–89
Google Scholar
Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711. https://doi.org/10.1111/j.1365-2699.2006.01460.x
Phillips EA (1959) Methods of vegetation study. Holt, Reinhart and Winston Co., United States of America
Google Scholar
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
Article
Google Scholar
Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. https://doi.org/10.1016/0022-5193(66)90013-0
Article
Google Scholar
Qin A, Liu B, Guo Q, Bussmann RW, Ma F, Jian Z, Pei S (2017) Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob Ecol Conserv 10:139–146. https://doi.org/10.1016/j.egecco.2017.02.004
Ranjitkar S, Sujakhu NM, Lu Y, Wang Q, Wang M, He J, Mortimer PE, Xu J, Kindt R, Zomer RJ (2016) Climate modelling for agroforestry species selection in Yunnan Province, China. Environ Model Softw 75:263–272. https://doi.org/10.1016/j.envsoft.2015.10.027
Rawat N, Kandpal K, Purohit S, Singh G, Pant D (2017) Predicting potential habitat distribution of Rauwolfia serpentina an important medicinal plant using Maxent modeling in Doon Valley, Uttarakhand State, India. Int J Adv Remote Sens GIS 6(1):2267–2273. https://doi.org/10.23953/cloud.ijarsg.288
Ray R, Gururaja KV, Ramchandra TV (2011) Predictive distribution modeling for rare Himalayan medicinal plant Berberis aristata DC. J Environ Biol 32:725–730
Remya K, Ramachandran A, Jayakumar S (2015) Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecol Eng 82:184–188. https://doi.org/10.1016/j.ecoleng.2015.04.053
Roe GH, Baker MB, Herla F (2017) Centennial glacier retreat as categorical evidence of regional climate change. Nat Geoscience 10(2):95–99. https://doi.org/10.1038/ngeo2863
Article
CAS
Google Scholar
Saha P, Mandal S, Das A, Das PC, Das S (2004) Evaluation of the anticarcinogenic activity of Swertia chirata Buch. Ham, an Indian medicinal plant, on DMBA-induced mouse skin carcinogenesis model. Phytother Res 18:373–378
Samaddar T, Chaubey B, Jha S, Jha TB (2013) Determination of swertiamarin and amarogentin content and evaluation of antibacterial activity in Eastern Himalayan species of Swertia L. Pharmacognosy Commun 3:64–70
Article
Google Scholar
Samaddar T, Jha S, Jha TB (2014) Indian Swertia from Eastern Himalaya: strategies of conservation and biotechnological improvements. In: Rybczyński JJ, Davey MR, Mikuła A (eds) The Gentianaceae-volume 1: characterization and ecology. Springer, Berlin, pp 279–301. https://doi.org/10.1007/978-3-642-54010-3_11
Sarma B, Baruah PS, Tanti B (2018) Habitat distribution modeling for reintroduction and conservation of Aristolochia indica L. - a threatened medicinal plant in Assam, India. J Threatened Taxa 10:12531–12537. https://doi.org/10.11609/jott.3600.10.11.12531-12537
Simpson EH (1949) Measurement of diversity. Nature 163:188
Article
Google Scholar
Sobek-Swant S, Kluza DA, Cuddington K, Lyons DB (2012) Potential distribution of emerald ash borer: what can we learn from ecological niche models using Maxent and GARP? Forest Ecol Manage 281:23–31. https://doi.org/10.1016/j.foreco.2012.06.017
Srivastava V, Griess VC, Padalia H (2018) Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecol Model 385:35–44. https://doi.org/10.1016/j.ecolmodel.2018.07.001
Starkel L, Sarkar S (2014) The Sikkim-Darjeeling Himalaya: landforms, evolutionary history and present-day processes. In: Kale VS (ed) Landscapes and landforms of India. Springer, Germany, pp 157–164. https://doi.org/10.1007/978-94-017-8029-2_15
Chapter
Google Scholar
Thapa S, Chitale V, Rijal SJ, Bisht N, Shrestha BB (2018) Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PLoS One 13:e0195752. https://doi.org/10.1371/journal.pone.0195752
Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. https://doi.org/10.1038/nature02121
Tsiftsis S, Djordjeviņć V, Tsiripidis I (2019) Neottia cordata (Orchidaceae) at its southernmost distribution border in Europe: threat status and effectiveness of Natura 2000 Network for its conservation. J Nat Conserv 48:27–35. https://doi.org/10.1016/j.jnc.2019.01.006
Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573. https://doi.org/10.1126/science.aaa4984
Warren DL, Glor RE, Turelli M (2010) Enmtools: a toolbox for comparative studies of environmental niche models, evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.1600-0587.2009.06142.x
Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, USA
WFO (2019) World Flora Online. Published on the Internet. http://www.worldfloraonline.org. Accessed 24 Oct 2019
Whitford PB (1949) Distribution of woodland plants in relation to succession and clonal growth. Ecology 30(2):199–208. https://doi.org/10.2307/1931186
Article
Google Scholar
Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51:83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004
Yi YJ, Cheng X, Yang ZF, Zhang SH (2016) Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng 92:260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010
Yonzone R (2017) The genus Swertia L. (Gentianaceae): an important ethnomedicinal plant of Darjeeling Himalaya of West Bengal, India. Trends Biosci 10:9045–9049
Google Scholar
Young N, Carter L, Evangelista P (2011) A MaxEnt model v3.3.3e tutorial (ArcGIS v10). Fort Collins, Colorado
Zhang L, Cao B, Bai C, Li G, Mao M (2016) Predicting suitable cultivation regions of medicinal plants with Maxent modeling and fuzzy logics: a case study of Scutellaria baicalensis in China. Environ Earth Sci 75:361. https://doi.org/10.1007/s12665-015-5133-9