Ali A, Yan E-R (2017) The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. For Ecol Manage 401:125–134. https://doi.org/10.1016/J.FORECO.2017.06.056
Article
Google Scholar
Ali A, Lin S-L, He J-K et al (2019) Big-sized trees overrule remaining trees’ attributes and species richness as determinants of aboveground biomass in tropical forests. Glob Change Biol 25:2810–2824. https://doi.org/10.1111/gcb.14707
Article
Google Scholar
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorolo Zeitschrift 6:711–728
Angiosperm Phylogeny Group IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/j.1095-8339.2009.00996.x
Article
Google Scholar
Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M et al (2017) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation, and landscape ecology research. Biol Rev 92:26–340. https://doi.org/10.1111/brv.12231
Article
Google Scholar
Avila-Diaz A, Justino F, Lindemann DS, Rodrigues JM, Ferreira GR (2020) Climatological aspects and changes in temperature and precipitation extremes in Viçosa-Minas Gerais. An Acad Bras Ciênc 92:e20190388. https://doi.org/10.1590/0001-3765202020190388
Article
Google Scholar
Baker TR, Phillips OL, Laurance WF (2009) Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences 6:297–307. https://doi.org/10.5194/bg-6-297-2009
Article
CAS
Google Scholar
Balvanera P, Quijas S, Pérez-Jiménez A (2011) Distribution patterns of tropical dry forest trees along a mesoscale water availability gradient. Biotropica 43:414–422. https://doi.org/10.1111/j.1744-7429.2010.00712.x
Article
Google Scholar
Barton K (2017) ‘MuMIn’: multi-model inference. R package version 1.40.0. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf. Accessed 15 Feb 2020
Bates D, Maechler M, Ben Bolker B et al (2019) ‘lme4’: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1–21. https://cran.r-project.org/web/packages/lme4/lme4.pdf. Accessed 31 May 2020
Brown C, Burslem DFRP, Illian JB et al (2013) Multispecies coexistence of trees in tropical forests: spatial signals of topographic niche differentiation increase with environmental variability. Proc Bio Sci 280(1764):20130502. https://doi.org/10.1098/rspb.2013.0502
Article
CAS
Google Scholar
Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York
Google Scholar
Burnham KP, Anderson DR, Huyvaer KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. https://doi.org/10.1007/s00265-010-1029-6
Article
Google Scholar
Campetella G, Botta-Dukát Z, Wellstein C et al (2011) Patterns of plant trait–environment relationships along a forest succession chronosequence. Agric Ecosyst Environ 145:38–48. https://doi.org/10.1016/j.agee.2011.06.025
Article
Google Scholar
Chave J, Coomes D, Jansen S et al (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Article
Google Scholar
Chave J, Réjou-Méchain M, Búrquez A et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190. https://doi.org/10.1111/gcb.12629
Article
Google Scholar
Chazdon RL (2014) Second growth: the promise of tropical forest regeneration in an age of deforestation. University of Chicago Press, Chicago, p 472. https://doi.org/10.1007/s13157-011-0156-9
Courtwright J, Findlay S (2011) Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson River. Wetlands 31:239–249
Article
Google Scholar
Crawley MJ (2012) The R book, 2nd edn. Wiley, London
Book
Google Scholar
Daws MI, Mullins CE, Burslem DFRP, Paton S, Dalling JW (2002) Topographic position affects the water regime in a semideciduous tropical forest in Panamá. Plant Soil 238:79–90. https://doi.org/10.1023/A:1014289930621
Article
Google Scholar
Del Peloso RV (2012) Dinâmica e sucessão de um fragmento de Floresta Atlântica. Universidade Federal de Viçosa, Dissertação de mestrado
Google Scholar
Ferreira-Júnior WG, Silva AF, Schaefer CEGR et al (2007) Influence of soils and topographic gradients on tree species distribution in a Brazilian Atlantic tropical semideciduous forest. Edinb J Bot 64:1–22. https://doi.org/10.1017/S0960428607000832
Article
Google Scholar
Gibbons JM, Newbery DM (2003) Drought avoidance and the effect of local topography on trees in the understorey of Bornean lowland rain forest. Plant Ecol 164:1–18. https://doi.org/10.1023/A:1021210532510
Article
Google Scholar
Gibson DJ (1988) The relationship of sheep grazing and soil variability to plant spatial patterns in dune grassland. J Ecol 76:233–252. https://doi.org/10.2307/2260466
Article
Google Scholar
Grell A, Shelton MG, Heitzman E (2005) Changes in plant species composition along an elevation gradient in an old-growth bottomland hardwood—Pinus taeda forest in southern Arkansas. J Torr Bot Soc 132:72–89. https://doi.org/10.3159/1095-5674(2005)132[72:CIPSCA]2.0.CO;2
Article
Google Scholar
Griscom HP, Ashton MS (2011) Restoration of dry tropical forests in Central America: a review of pattern and process. For Ecol Manage 261:1564–1579. https://doi.org/10.1016/j.foreco.2010.08.027
Article
Google Scholar
Hadley W (2015) R ggplot2 package: an implementation of the grammar of graphics. https://ggplot2.org, https://github.com/hadley/ggplot2
Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89:947–959. https://doi.org/10.1046/j.0022-0477.2001.00615.x
Article
Google Scholar
Holmes KW, Kyriakidis PC, Chadwick OA, Soares JV, Roberts DA (2005) Multi-scale variability in tropical soil nutrients following land-cover change. Biogeochemistry 74:173–203. https://doi.org/10.1007/s10533-004-3544-x
Article
CAS
Google Scholar
Husson F, Josse J, Le S (2018) ‘‘FactoMineR’’ package multivariate: exploratory data analysis and data mining. RStudio package version 1.0.14. https://cran.r-project.org/web/packages/FactoMineR/FactoMineR.pdf
Jucker T, Bongalov B, Burslem DFRP et al (2018) Topography shapes the structure, composition and function of tropical forest landscapes. Ecol Lett 21:989–1000. https://doi.org/10.1111/ele.12964
Article
Google Scholar
Kahmen H, Faig W (1988) Surveying. Walter de Gruyter & Co., Berlin
Book
Google Scholar
Kardol P, De Deyn GB, Laliberté E, Mariotte P, Hawkes CV (2013) Biotic plant–soil feedbacks across temporal scales. J Ecol 101:309–315. https://doi.org/10.1111/1365-2745.12046
Article
Google Scholar
Lan GY, Hu YH, Cao M, Zhu H (2011) Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. For Ecol Manag 262:1507–1513. https://doi.org/10.1016/j.foreco.2011.06.052
Article
Google Scholar
Laughlin DC, Richardson SJ, Wright EFP, Bellingham PJ (2015) Environmental filtering and positive plant litter feedback simultaneously explain correlations between leaf traits and soil fertility. Ecosystems 18:1269–1280. https://doi.org/10.1007/s10021-015-9899-0
Article
Google Scholar
Li Y, Yang F, Ou Y et al (2013) Changes in forest soil properties in different successional stages in lower tropical China. PLoS ONE 8(11):e81359. https://doi.org/10.1371/journal.pone.0081359
Article
CAS
Google Scholar
Li X, McCarty GW, Karlen DL, Cambardella CA (2018) Topographic metric predictions of soil redistribution and organic carbon in Iowa cropland fields. Catena 160:222–232. https://doi.org/10.1016/j.catena.2017.09.026
Article
CAS
Google Scholar
Long JA (2020) “jtools” package: analysis and presentation of social scientific data
Maestre FT, Reynolds JF (2006) Spatial variability in soil nutrient supply modulates nutrient and biomass responses to multiple global change drivers in model grassland communities. Glob Change Biol 12:2431–2441. https://doi.org/10.1111/j.1365-2486.2006.01262.x
Article
Google Scholar
Malhi Y, Aragão LEOC, Metcalfe DB et al (2009) Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob Change Biol 15:1255–1274. https://doi.org/10.1111/j.1365-2486.2008.01780.x
Article
Google Scholar
Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Svenning J-C (2013) Topography as a driver of local terrestrial vascular plant diversity patterns. Nord J Bot 31:129–144. https://doi.org/10.1111/j.1756-1051.2013.00082.x
Article
Google Scholar
Nettesheim FC, Conto T, Pereira MG, Machado DL (2015) Contribution of topography and incident solar radiation to variation of soil and plant litter at an area with heterogeneous terrain. Rev Bras Ciênc Solo 39:750–762. https://doi.org/10.1590/01000683rbcs20140459
Article
CAS
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner E (2018) ‘Vegan’: Community Ecology Package. R package version 2.4–6. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 16 June 2020
Oliveira RAC, Marques R, Marques MCM (2019) Plant diversity and local environmental conditions indirectly affect litter decomposition in a tropical forest. Appl Soil Ecol 134:45–53. https://doi.org/10.1016/j.apsoil.2018.09.016
Article
Google Scholar
Paula A, Silva AF, De Marco JP, Santos FAM, Souza AL (2004) Sucessão ecológica da vegetação arbórea em uma Floresta Estacional Semidecidual, Viçosa, MG, Brasil. Acta Bot Brasílica 18(3):407–423. https://doi.org/10.1590/S0102-33062004000300002
Article
Google Scholar
Poorter L, van der Sande MT, Arets EJMM et al (2017) Biodiversity and climate determine the functioning of Neotropical forests. Glob Ecol Biogeogr 26:1423–1434. https://doi.org/10.1111/geb.12668
Article
Google Scholar
Poorter L, Rozendaal DMA, Bongers F et al (2019) Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat Ecol Evol 3:928–934. https://doi.org/10.1038/s41559-019-0882-6
Article
Google Scholar
Powers JS, Becknell JM, Irving J, Peréz-Aviles D (2009) Diversity and structure of regenerating tropical dry forests in Costa Rica: geographic patterns and environmental drivers. For Ecol Manage 276:88–95. https://doi.org/10.1016/j.foreco.2008.10.036
Article
Google Scholar
R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 15 Feb 2019.
Réjou-Méchain M, Tanguy A, Piponiot C, Chave J, Hérault B (2017) Biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol 8:1163–1167. https://doi.org/10.1111/2041-210X.12753
Article
Google Scholar
Rodrigues AC, Villa PM, Neri AV (2019) Fine-scale topography shape richness, community composition, stem and biomass hyperdominant species in Brazilian Atlantic Forest. Ecol Indic 102:208–217. https://doi.org/10.1016/j.ecolind.2019.02.033
Article
Google Scholar
Rodrigues AC, Villa PM, Ferreira-Júnior W, Neri AV (2020) Fine-scale habitat differentiation shapes the composition, structure and aboveground biomass but not species richness of a tropical Atlantic forest. J For Res 31:1599–1611. https://doi.org/10.1007/s11676-019-00994-x
Article
Google Scholar
Rodrigues AC, Villa PM, Neri AV (2020) Distribuição espacial de fatores ambientais e atributos florestais usando rotinas no R. In: Diniz ES, Villa PM, eds. Aplicações da linguagem R em análises de vegetação. Atena, Ponta Grossa, pp. 56–68. https://doi.org/10.22533/at.ed.3552009036
Scarano FR, Ceotto P (2015) Brazilian Atlantic Forest: impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319. https://doi.org/10.1007/s10531-015-0972-y
Article
Google Scholar
Scatena FN, Lugo AE (1995) Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steep land watersheds of Puerto Rico. Geomorphology 13:199–213. https://doi.org/10.1016/B978-0-444-81867-6.50017-4
Article
Google Scholar
Scherer-Lorenzen M, Bonilla JL, Potvin C (2007) Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116:2108–2124. https://doi.org/10.1111/j.2007.0030-1299.16065.x
Article
Google Scholar
Schmitz D, Schaefer CERG, Putzke J et al (2020) How does the pedoenvironmental gradient shape non-vascular species assemblages and community structures in Maritime Antarctica? Ecol Indic 108:105726. https://doi.org/10.1016/j.ecolind.2019.105726
Article
Google Scholar
Scholten T, Goebes P, Kühn P et al (2017) On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—a study from SE China. J Plant Ecol 10:111–127. https://doi.org/10.1093/jpe/rtw0652017
Article
Google Scholar
Segura G, Balvanera P, Duran E, Perez A (2003) Tree community structure and stem mortality along a water availability gradient in a Mexican tropical dry forest. Plant Ecol 169:259–271. https://doi.org/10.1023/A:1026029122077
Article
Google Scholar
Universidade Federal de Viçosa – UFV (2020) Departamento de Engenharia Agrícola. Estação Climatológica Principal de Viçosa. Boletim meteorológico. Viçosa
van der Sande MT, Arets EJMM, Peña-Claros M et al (2018) Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Funct Ecol 32:461–474. https://doi.org/10.1111/1365-2435.12968
Article
Google Scholar
Villa PM, Martins SV, Oliveira Neto SN et al (2018a) Woody species diversity as an indicator of the forest recovery after shifting cultivation disturbance in the northern Amazon. Ecol Indic 95:687–694. https://doi.org/10.1016/J.ECOLIND.2018.08.005
Article
Google Scholar
Villa PM, Martins SV, Oliveira Neto SN et al (2018b) Intensification of shifting cultivation reduces forest resilience in the northern Amazon. For Ecol Manage 430:312–320. https://doi.org/10.1016/j.foreco.2018.08.014
Article
Google Scholar
Villa PM, Ali A, Martins SV et al (2020) Stand structural attributes and functional trait composition overrule the effects of functional divergence on aboveground biomass during Amazon forest succession. For Ecol Manag 477:118481. https://doi.org/10.1016/j.foreco.2020.118481
Article
Google Scholar
Villa PM, Martins SV, Pilocelli A et al (2021) Attributes of stand-age-dependent forest determine technosol fertility of Atlantic forest re-growing on mining tailings in Mariana, Brazil. J For Res. https://doi.org/10.1007/s11676-021-01359-z
Article
Google Scholar
Xia S, Chen J, Schaefer D, Detto M (2015) Scale-dependent soil macronutrient variability reveals effects of litterfall in a tropical rainforest. Plant Soil 391:51–61. https://doi.org/10.1007/s11104-015-2402-z
Article
CAS
Google Scholar
Zalatnai M, Körmöczi L (2004) Fine-scale pattern of the boundary zones in alkaline grassland communities. Community Ecol 5:235–246. https://doi.org/10.1556/ComEc.5.2004.2.11
Article
Google Scholar
Zanne AE, Lopez-Gonzalez G, Coomes DA et al (2009) Data from: towards a worldwide wood economics spectrum. Dryad Digital Repos. https://doi.org/10.5061/dryad.234
Zhang Y, Chen HYH, Taylor A (2014) Multiple drivers of plant diversity in forest ecosystems. Glob Ecol Biogeogr 23:885–893. https://doi.org/10.1111/geb.12188
Article
Google Scholar