Bai E, Houlton BZ, Wang YP (2012) Isotopic identification of nitrogen hotspots across natural terrestrial ecosystems. Biogeosciences 9(8):3287–3304. https://doi.org/10.5194/bg-9-3287-2012
Article
CAS
Google Scholar
Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
Article
CAS
Google Scholar
Bostrm B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153(1):89–98. https://doi.org/10.1007/s00442-007-0700-8
Article
Google Scholar
Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178(1):24–40. https://doi.org/10.1111/j.1469-8137.2007.02342.x
Article
CAS
Google Scholar
Brenner DL, Amundson R, Baisden WT et al (2001) Soil N and 15N variation with time in a California annual grassland ecosystem. Geochim Cosmochim Acta 65(22):4171–4186. https://doi.org/10.1016/S0016-7037(01)00699-8
Article
CAS
Google Scholar
Busch FA, Holloway-Phillips MH, Stuart-Williams H et al (2020) Revisiting carbon isotope discrimination in C3 plants shows respiration rules when photosynthesis is low. Nat Plants 6(3):245–258. https://doi.org/10.1038/s41477-020-0606-6
Article
CAS
Google Scholar
Cao X, Jia JB, Li H et al (2012) Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species. Plant Biol 14(4):612–620. https://doi.org/10.1111/j.1438-8677.2011.00531.x
Article
CAS
Google Scholar
Chen D, Li J, Lan Z et al (2016) Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Funct Ecol 30(4):658–669. https://doi.org/10.1111/1365-2435.12525
Article
Google Scholar
Clemmensen KE, Bahr A, Ovaskainen O et al (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615–1618. https://doi.org/10.1126/science.1231923
Article
CAS
Google Scholar
Conrad R, Klose M, Claus AP et al (2010) Methanogenic pathway, 13C isotope fractionation, and archaeal community composition in the sediment of two clear-water lakes of Amazonia. Limnol Oceanogr 55(2):689–702. https://doi.org/10.4319/lo.2010.55.2.0689
Article
CAS
Google Scholar
Cotrufo MF, Drake B, Ehleringer JR (2005) Palatability trials on hardwood leaf litter grown under elevated CO2: a stable carbon isotope study. Soil Biol Biochem 37(6):1105–1112. https://doi.org/10.1016/j.soilbio.2004.11.009
Article
CAS
Google Scholar
Crow SE, Sulzman EW, Rugh WD et al (2006) Isotopic analysis of respired CO2 during decomposition of separated soil organic matter pools. Soil Biol Biochem 38(11):3279–3291. https://doi.org/10.1016/j.soilbio.2006.04.007
Article
CAS
Google Scholar
Cusack DF, Torn MS, McDowell WH et al (2010) The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob Change Biol 16(9):2555–2572. https://doi.org/10.1111/j.1365-2486.2009.02131.x
Article
Google Scholar
Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33(1):507–559. https://doi.org/10.1146/annurev.ecolsys.33.020602.095451
Article
Google Scholar
Dijkstra P, Laviolette CM, Coyle JS et al (2010) 15N enrichment as an integrator of the effects of C and N on microbial metabolism and ecosystem function. Ecol Lett 11(4):389–397. https://doi.org/10.1111/j.1461-0248.2008.01154.x
Article
Google Scholar
Ehleringer JR (1993) Variation in leaf carbon isotope discrimination in Encelia farinosa: implications for growth, competition, and drought survival. Oecologia 95(3):340–346. https://doi.org/10.1007/BF00320986
Article
Google Scholar
Emmett BA, Kjønaas OJ, Gundersen P, Koopmans C, Tietema A, Sleep D (1998) Natural abundance of 15N in forests across a nitrogen deposition gradient. For Ecol Manage 101(1–3):9–18. https://doi.org/10.1016/S0378-1127(97)00121-7
Article
Google Scholar
Fernandez-Alonso MJ, Yuste JC, Kitzler B et al (2018) Changes in litter chemistry associated with global change-driven forest succession resulted in time-decoupled responses of soil carbon and nitrogen cycles. Soil Biol Biochem 120:200–211. https://doi.org/10.1016/j.soilbio.2018.02.013
Article
CAS
Google Scholar
Finzi AC, Abramoff RZ, Spiller KS et al (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Change Biol 21(5):2082–2094. https://doi.org/10.1111/gcb.12816
Article
Google Scholar
Flexas JM, Ribas-Carbó BJ, Bota J et al (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172(1):73–82. https://doi.org/10.1111/j.1469-8137.2006.01794.x
Article
CAS
Google Scholar
Galewsky J, Steen-Larsen HC, Field RD, Worden J, Risi C, Schneider M (2016) Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev Geophys 54(4):809–865. https://doi.org/10.1002/2015RG000512
Article
Google Scholar
Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892. https://doi.org/10.1126/science.1136674
Article
CAS
Google Scholar
Gao Q, Hasselquist NJ, Palmroth S et al (2014) Short-term response of soil respiration to nitrogen fertilization in a subtropical evergreen forest. Soil Biol Biochem 76:297–300. https://doi.org/10.1016/j.soilbio.2014.04.020
Article
CAS
Google Scholar
Garten CT (1993) Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch watershed. Ecology 74(7):2098–2113. https://doi.org/10.2307/1940855
Article
Google Scholar
Gessler A, Tcherkez G, Peuke AD et al (2012) Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricin. Plant Cell Environ 35:1245–1257. https://doi.org/10.1111/j.1365-3040.2008.01806.x
Article
CAS
Google Scholar
Gougherty SW, Bauer JE, Pohlman JW (2018) Exudation rates and δ13C signatures of tree root soluble organic carbon in a riparian forest. Biogeochemistry 137(1):235–252. https://doi.org/10.1007/s10533-017-0415-9
Article
Google Scholar
Guerrieri R, Mencuccini M, Sheppard LJ et al (2011) The legacy of enhanced N and S deposition as revealed by the combined analysis of δ13C, δ18O and δ15N in tree rings. Glob Chang Biol 17:1946–1962. https://doi.org/10.1111/j.1365-2486.2010.02362.x
Article
Google Scholar
Gurmesa GA, Lu X, Gundersen P et al (2017) Nitrogen input 15N signatures are reflected in plant 15N natural abundances in subtropical forests in China. Biogeosciences 14(9):2359–2370. https://doi.org/10.5194/bg-14-2359-2017
Article
CAS
Google Scholar
Hobbie EA, Chen J, Hanson PJ et al (2017) Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences 14(9):2481–2494. https://doi.org/10.5194/bg-2016-261
Article
CAS
Google Scholar
Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137(2):179–203
Article
Google Scholar
Högberg MN, Skyllberg U, Hgberg P et al (2019) Does ectomycorrhiza have a universal key role in the formation of soil organic matter in boreal forests? Soil Biol Biochem 140:107635. https://doi.org/10.1016/j.soilbio.2019.107635
Article
CAS
Google Scholar
Högberg P, Johannisson C, Högberg MN (2014) Is the high 15N natural abundance of trees in N-loaded forests caused by an internal ecosystem N isotope redistribution or a change in the ecosystem N isotope mass balance? Biogeochemistry 117(2–3):351–358. https://doi.org/10.1007/s10533-013-9873-x
Article
CAS
Google Scholar
Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35(1):313–347. https://doi.org/10.1146/annurev.earth.35.031306.140057
Article
CAS
Google Scholar
Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci 103(23):8745–8750. https://doi.org/10.1073/pnas.0510185103
Article
CAS
Google Scholar
Jia Y, Wang G, Tan Q et al (2016) Temperature exerts no influence on organic matter δ13C of surface soil along the 400mm isopleth of mean annual precipitation in China. Biogeosciences 13(17):5057–5064. https://doi.org/10.5194/bg-13-5057-2016
Article
CAS
Google Scholar
Kahmen A, Wanek W, Buchmann N (2008) Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156:861–870. https://doi.org/10.1007/s00442-008-1028-8
Article
Google Scholar
Kalcsits LA, Buschhaus HA, Guy RD (2014) Nitrogen isotope discrimination as an integrated measure of nitrogen fluxes, assimilation and allocation in plants. Physiol Plant 151(3):293–304. https://doi.org/10.1111/ppl.12167
Article
CAS
Google Scholar
Kramer MG, Lajtha K, Aufdenkampe AK (2017) Depth trends of soil organic matter C:N and 15N natural abundance controlled by association with minerals. Biogeochemistry 136(3):237–248. https://doi.org/10.1007/s10533-017-0378-x
Article
CAS
Google Scholar
Kriszan M, Amelung W, Schellberg J et al (2009) Long-term changes of the δ15N natural abundance of plants and soil in a temperate grassland. Plant Soil 325(1–2):157–169. https://doi.org/10.1007/s11104-009-9965-5
Article
CAS
Google Scholar
Lavergne A, Sandoval D, Hare VJ et al (2020) Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: insights from stable carbon isotope data. Glob Change Biol 26(12):7158–7172. https://doi.org/10.1111/gcb.15364
Article
Google Scholar
Liu X, Zhang Y, Han W et al (2013) Enhanced nitrogen deposition over China. Nature 494:459–462. https://doi.org/10.1038/nature11917
Article
CAS
Google Scholar
Liu J, Wang C, Peng B et al (2017) Effect of nitrogen addition on the variations in the natural abundance of nitrogen isotopes of plant and soil components. Plant Soil 412(1–2):453–464. https://doi.org/10.1007/s11104-016-3081-0
Article
CAS
Google Scholar
Liu G, Xing Y, Wang Q et al (2021) Long-term nitrogen addition regulates root nutrient capture and leaf nutrient resorption in Larix gmelinii in a boreal forest. Eur J For Res 140(4):763–776. https://doi.org/10.1007/s10342-021-01364-1
Article
CAS
Google Scholar
Lucander K, Zanchi G, Akselsson C et al (2021) The effect of nitrogen fertilization on tree growth, soil organic carbon and nitrogen leaching—a modeling study in a steep nitrogen deposition gradient in sweden. Forests 12(3):298. https://doi.org/10.3390/f12030298
Article
Google Scholar
Morecroft MD, Woodward FI (1990) Experimental investigations on the environmental determination of δ13C at different altitudes. J Exp Bot 10:1303–1308. https://doi.org/10.1093/jxb/41.10.1303
Article
Google Scholar
Neumann G, Romheld V (2000) The release of root exudates as affected by the plant's physiological status. In: The rhizosphere, CRC Press, pp 57–110
Niu SL, Classen AT, Dukes JS et al (2016) Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecol Lett 19(6):697–709. https://doi.org/10.1111/ele.12591
Article
Google Scholar
Park R, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21(1):110–126. https://doi.org/10.1016/S0016-7037(60)80006-3
Article
CAS
Google Scholar
Potapov AM, Tiunov AV, Stefan S (2019) Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol Rev 94(1):37–59. https://doi.org/10.1111/brv.12434
Article
Google Scholar
Qiu N (2011) The method of determining photosynthetic rate based on fresh weight of Pinaceae conifer. For Sci Technol 36(4):18–20
Google Scholar
Randerson J, Liu H, Flanner M et al (2006) The impact of boreal forest fire on climate warming. Science 314(5802):1130–1132. https://doi.org/10.1126/science.1132075
Article
CAS
Google Scholar
Rao Z, Guo W, Cao J et al (2017) Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: a global review. Earth-Sci Rev 165:110–119. https://doi.org/10.1016/j.earscirev.2016.12.007
Article
CAS
Google Scholar
Reis C, Nardoto GB, Rochelle A et al (2016) Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes. Oecologia 183(3):841–848. https://doi.org/10.1007/s00442-016-3789-9
Article
Google Scholar
Rivero-Villar A, Ruiz-Suárez G, Templer PH et al (2021) Nitrogen cycling in tropical dry forests is sensitive to changes in rainfall regime and nitrogen deposition. Biogeochemistry 153:283–302. https://doi.org/10.1007/s10533-021-00788-6
Article
CAS
Google Scholar
Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16(3):153–162. https://doi.org/10.1016/S0169-5347(00)02098-X
Article
CAS
Google Scholar
Schweiger PF (2016) Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder. J Plant Physiol 205:84–92. https://doi.org/10.1016/j.jplph.2016.08.004
Article
CAS
Google Scholar
Sheng Z, Huang Y, He K et al (2019) Responses of plant 15N natural abundance and isotopic fractionation to N addition reflect the N status of a temperate steppe in China. J Plant Ecol 12(3):550–563. https://doi.org/10.1093/jpe/rty047
Article
Google Scholar
Siegwolf R, Matyssek R, Saurer M et al (2001) Stable isotope analysis reveals differential effects of soil nitrogen and nitrogen dioxide on the water use efficiency in hybrid poplar leaves. New Phytol 149(2):233–246. https://doi.org/10.1046/j.1469-8137.2001.00032.x
Article
Google Scholar
Tomaszewski T, Sievering H (2007) Canopy uptake of atmospheric N deposition at a conifer forest: part II - response of chlorophyll fluorescence and gas exchange parameters. Tellus Ser B-Chem Phys Meteorol 59(3):493–501. https://doi.org/10.1111/j.1600-0889.2007.00265.x
Article
CAS
Google Scholar
Ulli S, Rajabi A, Griffiths H, Berry JA (2008) Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155(3):441–454. https://doi.org/10.1007/s00442-007-0932-7
Article
Google Scholar
Vallano DM, Sparks JP (2013) Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient. Oecologia 172(1):47–58. https://doi.org/10.1007/s00442-012-2489-3
Article
Google Scholar
Vitousek PM, Cassman K, Cleveland C et al (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(1):1–45. https://doi.org/10.1023/A:1015798428743
Article
Google Scholar
Waldrop MP, Zak DR, Sinsabaugh RL et al (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14(4):1172–1177. https://doi.org/10.1890/03-5120
Article
Google Scholar
Wang C, Wang X, Liu D et al (2014) Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat Commun 5:4799. https://doi.org/10.1038/ncomms5799
Article
CAS
Google Scholar
Wang R, Peuelas J, Li T et al (2021) Natural abundance of 13C and 15N provides evidence for plant-soil carbon and nitrogen dynamics in a N-fertilized meadow. Ecology 102(6):e03348. https://doi.org/10.1002/ecy.3348
Article
Google Scholar
Yan G, Xing Y, Wang J et al (2018) Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: effects of nitrogen deposition. Agric For Meteorol 248:70–81. https://doi.org/10.1016/j.agrformet.2017.09.015
Article
Google Scholar
Zhang ZL, Li N, Xiao J et al (2018) Changes in plant nitrogen acquisition strategies during the restoratioN of spruce plantations on the eastern Tibetan Plateau, China. Soil Biol Biochem 119:50–58. https://doi.org/10.1016/j.soilbio.2018.01.002
Article
CAS
Google Scholar