Adachi Y, Yukimoto S, Deushi M, Obata A, Nakano H, Tanaka TY, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Shindo E, Tsujino H, Mizuta R, Yabu S, Koshiro T, Ose T, Kitoh A (2013) Basic performance of a new earth system model of the Meteorological. Research Institute (MRI-ESM1). Papers in Meteorology and Geophysics, 64:1-19. https://doi.org/10.2467/mripapers.64.1.
Ahlström A, Raupach MR, Schurgers G et al (2015) The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348(6237):895–899. https://doi.org/10.1126/science.aaa1668
Article
CAS
Google Scholar
Akaev AA (2017) From Rio to Paris: achievements, problems, and prospects in the struggle against climate change. Her Russ Acad Sci 87(4):299–309. https://doi.org/10.1134/S1019331617040013
Article
Google Scholar
Arora V, Boer GJ (2010) Uncertainties in the 20th century carbon budget associated with land use change. Glob Chang Biol 16(12):3327–3348. https://doi.org/10.1111/j.1365-2486.2010.02202.x
Article
Google Scholar
Arora V, Boer GJ, Friedlingstein P, et al (2013) Carbon–concentration and carbon–climate feedbacks in CMIP5 earth system models. J Clim 26(15):5289–5314. https://doi.org/10.1175/JCLI-D-12-00494.1
Arora VK, Katavouta A, Williams RG, Jones CD, Brovkin V, Friedlingstein P, Schwinger J, Bopp L, Boucher O, Cadule P, Chamberlain MA, Christian JR, Delire C, Fisher RA, Hajima T, Ilyina T, Joetzjer E, Kawamiya M, Koven CD, Krasting JP, Law RM, Lawrence DM, Lenton A, Lindsay K, Pongratz J, Raddatz T, Séférian R, Tachiiri K, Tjiputra JF, Wiltshire A, Wu T, Ziehn T (2020) Carbon–concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17(16):4173–4222. https://doi.org/10.5194/bg-17-4173-2020
Article
CAS
Google Scholar
Bonan GB (1996) A Land Surface Model (LSM Version 1.0) for ecological, hydrological and atmospheric studies: technical description and user’s guide (NCAR Technical Note), No. 417. National Center for Atmospheric Research, Boulder
Brovkin V, Raddatz T, Reick CH, Claussen M, Gayler V (2009) Global biogeophysical interactions between forest and climate. Geophys Res Lett 36:L07405
Article
Google Scholar
Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Μu M, Saatchi S, Santoro M, Thurner M, Weber U, Ahrens B, Beer C, Cescatti A, Randerson JT, Reichstein M (2014) Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514(7521):213–217. https://doi.org/10.1038/nature13731
Article
CAS
Google Scholar
Chazdon RL, Broadbent EN, Rozendaal DMA, Bongers F, Zambrano AMA, Aide TM, Balvanera P, Becknell JM, Boukili V, Brancalion PHS, Craven D, Almeida-Cortez JS, Cabral GAL, de Jong B, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Durán SM, Espírito-Santo MM, Fandino MC, César RG, Hall JS, Hernández-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Lohbeck M, Martínez-Ramos M, Massoca P, Meave JA, Mesquita R, Mora F, Muñoz R, Muscarella R, Nunes YRF, Ochoa-Gaona S, Orihuela-Belmonte E, Peña-Claros M, Pérez-García EA, Piotto D, Powers JS, Rodríguez-Velazquez J, Romero-Pérez IE, Ruíz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Uriarte M, van Breugel M, van der Wal H, Veloso MDM, Vester H, Vieira ICG, Bentos TV, Williamson GB, Poorter L (2016) Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv 2(5):e1501639. https://doi.org/10.1126/sciadv.1501639
Article
CAS
Google Scholar
Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O'Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-System model - HadGEM2. Geosci Model Dev 4(4):1051–1075. https://doi.org/10.5194/gmd-4-1051-2011
Article
Google Scholar
Cox PM (2001) Description of the TRIFFID dynamic global vegetation model, technical note 24. Hadley Centre, Met Office
Google Scholar
Dai YJ, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang ZL (2003) The common land model. Bull Am Meteorol Soc 84(8):1013–1023. https://doi.org/10.1175/BAMS-84-8-1013
Article
Google Scholar
Dai YJ, Dickinson RE, Wang YP (2004) A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J Clim 17(12):2281–2299. https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2
Article
Google Scholar
Dufresne J, Foujols M, Denvil S et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9-10):2123–2165. https://doi.org/10.1007/s00382-012-1636-1
Article
Google Scholar
Dunne JP, John JG, Shevliakova E et al (2013) GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J Clim 26:2247–2267
Article
Google Scholar
Espinosa M, Acuna E, Cancino J, Munoz F, Perry DA (2005) Carbon sink potential of radiata pine plantations in Chile. Forestry 78(1):11–19. https://doi.org/10.1093/forestry/cpi002
Article
Google Scholar
Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(14):3337–3353. https://doi.org/10.1175/JCLI3800.1
Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014) Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27(2):511–526. https://doi.org/10.1175/JCLI-D-12-00579.1
Article
Google Scholar
Friedlingstein P, Jones MW, O’Sullivan M et al (2019) Global Carbon Budget 2019. Earth Syst Sci Data 11(4):1783–1838. https://doi.org/10.5194/essd-11-1783-2019
Article
Google Scholar
Friend AD, Lucht W, Rademacher TT et al (2013) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. PNAS 111:3280–3285
Article
Google Scholar
Grassi G, House J, Dentener F, Federici S, den Elzen M, Penman J (2017) The key role of forests in meeting climate targets requires science for credible mitigation. Nat Clim Change 7(3):220–226. https://doi.org/10.1038/nclimate3227
Article
Google Scholar
Grelle A, Aronsson P, Weslien P, Klemedtsson L, Lindroth A (2007) Large carbon-sink potential by Kyoto forests in Sweden—a case study on willow plantations. Tellus B Chem Phys Meteorol 59(5):910–918. https://doi.org/10.1111/j.1600-0889.2007.00299.x
Article
CAS
Google Scholar
Hararuk O, Xia JY, Luo YQ (2014) Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov chain Monte Carlo method. J Geophys Res Biogeosci 119(3):403–417. https://doi.org/10.1002/2013JG002535
Huntzinger DN, Michalak AM, Schwalm C, Ciais P, King AW, Fang Y, Schaefer K, Wei Y, Cook RB, Fisher JB, Hayes D, Huang M, Ito A, Jain AK, Lei H, Lu C, Maignan F, Mao J, Parazoo N, Peng S, Poulter B, Ricciuto D, Shi X, Tian H, Wang W, Zeng N, Zhao F (2017) Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci Rep 7(1):4765. https://doi.org/10.1038/s41598-017-03818-2
Article
CAS
Google Scholar
IPCC (2018) Global Warming of 1.5 °C
Ji J, Huang M, Li K (2008) Prediction of carbon exchange between China terrestrial ecosystem and atmosphere in 21st century. Sci China Ser D Earth Sci 51(6):885–898. https://doi.org/10.1007/s11430-008-0039-y
Article
CAS
Google Scholar
Ji D, Wang L, Feng J, Wu Q, Cheng H, Zhang Q, Yang J, Dong W, Dai Y, Gong D, Zhang RH, Wang X, Liu J, Moore JC, Chen D, Zhou M (2014) Description and basic evaluation of BNU-ESM version 1. Geosci Model Dev 7(5):2039–2064. https://doi.org/10.5194/gmd-7-2039-2014
Article
Google Scholar
Jiang L, Yan Y, Hararuk O, Mikle N, Xia J, Shi Z, Tjiputra J, Wu T, Luo Y (2015) Scale-dependent performance of CMIP5 Earth system models in simulating terrestrial vegetation carbon. J Clim 28(13):5217–5232. https://doi.org/10.1175/JCLI-D-14-00270.1
Article
Google Scholar
Jiang LF, Shi Z, Xia JY, Liang JY, Lu XJ, Wang Y, Luo YQ (2017) Transient traceability analysis of land carbon storage dynamics: procedures and its application to two forest ecosystems. J Adv Model Earth Syst 9(8):2822–2835. https://doi.org/10.1002/2017MS001004
Article
Google Scholar
Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O'Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chini L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570. https://doi.org/10.5194/gmd-4-543-2011
Article
Google Scholar
Jones C, Robertson E, Arora V, Friedlingstein P, Shevliakova E, Bopp L, Brovkin V, Hajima T, Kato E, Kawamiya M, Liddicoat S, Lindsay K, Reick CH, Roelandt C, Segschneider J, Tjiputra J (2013) Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J Clim 26(13):4398–4413. https://doi.org/10.1175/JCLI-D-12-00554.1
Kaul M, Mohren GMJ, Dadhwal VK (2010) Carbon storage and sequestration potential of selected tree species in India. Mitig Adapt Strat Gl 15(5):489–510. https://doi.org/10.1007/s11027-010-9230-5
Article
Google Scholar
Knapp AK, Ciais P, Smith MD (2017) Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytol 214(1):41–47. https://doi.org/10.1111/nph.14381
Article
Google Scholar
Kongsager R, Napier J, Mertz O (2013) The carbon sequestration potential of tree crop plantations. Mitig Adapt Strat Gl 18(8):1197–1213. https://doi.org/10.1007/s11027-012-9417-z
Article
Google Scholar
Koven CD, Chambers JQ, Georgiou K, Knox R, Negron-Juarez R, Riley WJ, Arora VK, Brovkin V, Friedlingstein P, Jones CD (2015) Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models. Biogeosciences 12(17):5211–5228. https://doi.org/10.5194/bg-12-5211-2015
Article
Google Scholar
Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19:GB1015
Article
Google Scholar
Lawrence DM, Oleson KW, Flanner MG et al (2011) Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst 3:M03001
Google Scholar
Le Quéré C, Andrew RM, Friedlingstein P et al (2018) Global Carbon Budget 2017. Earth Syst Sci Data 10(1):405–448. https://doi.org/10.5194/essd-10-405-2018
Article
Google Scholar
Le Quéré C, Jackson RB, Jones MW et al (2020) Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat Clim Change 10(7):647–653.https://doi.org/10.1038/s41558-020-0797-x
Lu XJ, Wang Y-P, Luo YQ, Jiang LF (2018) Ecosystem carbon transit versus turnover times in response to climate warming and rising atmospheric CO2 concentration. Biogeosciences 15(21):6559–6572. https://doi.org/10.5194/bg-15-6559-2018
Luo Y, Su B, Currie WS et al (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric CO2 concentration. BioScience 54(8):731–739. https://doi.org/10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
Article
Google Scholar
Luo YQ, Shi Z, Lu XJ, Xia J, Liang J, Jiang J, Wang Y, Smith MJ, Jiang L, Ahlström A, Chen B, Hararuk O, Hastings A, Hoffman F, Medlyn B, Niu S, Rasmussen M, Todd-Brown K, Wang YP (2017) Transient dynamics of terrestrial carbon storage: mathematical foundation and numeric examples. Biogeosciences 14(1):145–161. https://doi.org/10.5194/bg-14-145-2017
Article
CAS
Google Scholar
Maurer GE, Hallmark AJ, Brown RF, Sala OE, Collins SL (2020) Sensitivity of primary production to precipitation across the United States. Ecol Lett 23(3):527–536. https://doi.org/10.1111/ele.13455
Article
Google Scholar
Niu XZ, Duiker SW (2006) Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern US. Forest Ecol Manag 223(1-3):415–427. https://doi.org/10.1016/j.foreco.2005.12.044
Article
Google Scholar
Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler K-G, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Clim Dyn 29(6):565–574. https://doi.org/10.1007/s00382-007-0247-8
Article
Google Scholar
Reick CH, Raddatz T, Brovkin V, Gayler V (2013) Representation of natural and anthropogenic land cover change in MPI-ESM. J Adv Model Earth Syst 5(3):459–482. https://doi.org/10.1002/jame.20022
Article
Google Scholar
Sato H, Itoh A, Kohyama T (2007) SEIB-DGVM: A new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol Model 200(3-4):279–307. https://doi.org/10.1016/j.ecolmodel.2006.09.006
Shevliakova E, Pacala SW, Malyshev S, Hurtt GC, Milly PCD, Caspersen JP, Sentman LT, Fisk JP, Wirth C, Crevoisier C (2009) Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Global Biogeochem Cycles 23:GB2022
Article
Google Scholar
Smith P, Andren O, Karlsson T, Perala P, Regina K, Rounsevell M, van Wesemael B (2005) Carbon sequestration potential in European croplands has been overestimated. Glob Chang Biol 11(12):2153–2163. https://doi.org/10.1111/j.1365-2486.2005.01052.x
Article
Google Scholar
Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, Luo Y, Guo D, Adam Langley J, Zscheischler J, Dukes JS, Tang J, Chen J, Hofmockel KS, Kueppers LM, Rustad L, Liu L, Smith MD, Templer PH, Quinn Thomas R, Norby RJ, Phillips RP, Niu S, Fatichi S, Wang Y, Shao P, Han H, Wang D, Lei L, Wang J, Li X, Zhang Q, Li X, Su F, Liu B, Yang F, Ma G, Li G, Liu Y, Liu Y, Yang Z, Zhang K, Miao Y, Hu M, Yan C, Zhang A, Zhong M, Hui Y, Li Y, Zheng M (2019) A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol 3(9):1309–1320. https://doi.org/10.1038/s41559-019-0958-3
Article
Google Scholar
Tan ZX, Lal R (2005) Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA. Agric Ecosyst Environ 111(1-4):140–152. https://doi.org/10.1016/j.agee.2005.05.012
Article
CAS
Google Scholar
Tan ZX, Liu SG, Sohl TL, Wu YP, Young CJ (2015) Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States. PNAS 112(41):12723–12728. https://doi.org/10.1073/pnas.1512542112
Article
CAS
Google Scholar
Taylor KE, Balaji V, Hankin S, Juckes M, Lawrence B (2010) CMIP5 and AR5 data reference syntax (DRS), Version 0.25. http://cmip-pcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_syntax_v0-25_clean.pdf
Taylor KE, Stouffer RJ, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Article
Google Scholar
The HadGEM2 Development Team (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4(3):723–757. https://doi.org/10.5194/gmd-4-723-2011
Article
Google Scholar
The NCAR Command Language (Version 6.6.2) [Software] (2019) Boulder. UCAR/NCAR/CISL/TDD, Colorado https://doi.org/10.5065/D6WD3XH5
Google Scholar
Thornton PE, Zimmermann NE (2007) An improved canopy integration scheme for a land surface model with prognostic canopy structure. J Clim 20(15):3902–3923. https://doi.org/10.1175/JCLI4222.1
Article
Google Scholar
Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem Cycles 21:GB4018
Article
Google Scholar
Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque J-F, Feddema JJ, Lee Y-H (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6(10):2099–2120. https://doi.org/10.5194/bg-6-2099-2009
Article
CAS
Google Scholar
Tian H, Lu C, Yang J, Banger K, Huntzinger DN, Schwalm CR, Michalak AM, Cook R, Ciais P, Hayes D, Huang M, Ito A, Jain AK, Lei H, Mao J, Pan S, Post WM, Peng S, Poulter B, Ren W, Ricciuto D, Schaefer K, Shi X, Tao B, Wang W, Wei Y, Yang Q, Zhang B, Zeng N (2015) Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochem Cycles 29(6):775–792. https://doi.org/10.1002/2014GB005021
Article
CAS
Google Scholar
Tjiputra JF, Roelandt C, Bentsen M, Lawrence DM, Lorentzen T, Schwinger J, Seland Ø, Heinze C (2013) Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci Model Dev 6(2):301–325. https://doi.org/10.5194/gmd-6-301-2013
Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD (2013) Causes of variation in soil carbon predictions from CMIP5 Earth system models and comparison with observations. Biogeosciences 10(3):1717–1736. https://doi.org/10.5194/bg-10-1717-2013
Article
Google Scholar
Volodin EM (2007) Atmosphere–ocean general circulation model with the carbon cycle. Izv Acad Sci USSR Atmos Oceanic Phys 43(3):266–280. https://doi.org/10.1134/S0001433807030024
Article
Google Scholar
Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4(4):845–872. https://doi.org/10.5194/gmd-4-845-2011
Article
Google Scholar
Wilcox KR, Shi Z, Gherardi LA, Lemoine NP, Koerner SE, Hoover DL, Bork E, Byrne KM, Cahill J Jr, Collins SL, Evans S, Gilgen AK, Holub P, Jiang L, Knapp AK, LeCain D, Liang J, Garcia-Palacios P, Peñuelas J, Pockman WT, Smith MD, Sun S, White SR, Yahdjian L, Zhu K, Luo Y (2017) Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Glob Chang Biol 23(10):4376–4385. https://doi.org/10.1111/gcb.13706
Article
Google Scholar
Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Chang Biol 17(2):927–942. https://doi.org/10.1111/j.1365-2486.2010.02302.x
Article
Google Scholar
Wu T, Li W, Ji J et al (2013) Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J Geophys Res Atmos 118:1–22
Google Scholar
Wu D, Piao S, Zhu D, Wang X, Ciais P, Bastos A, Xu X, Xu W (2020) Accelerated terrestrial ecosystem carbon turnover and its drivers. Glob Change Biol 26(9):5052–5062. https://doi.org/10.1111/gcb.15224
Article
Google Scholar
Xu X, Shi Z, Li DJ, Zhou XH, Sherry RA, Luo YQ (2015) Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob Chang Biol 21(10):3846–3853. https://doi.org/10.1111/gcb.12940
Article
Google Scholar
Zhou T, Shi P, Jia G, Dai Y, Zhao X, Shangguan W, Du L, Wu H, Luo Y (2015) Age-dependent forest carbon sink: estimation via inverse modeling. J Geophys Res Biogeosci 120(12):2473–2492. https://doi.org/10.1002/2015JG002943
Article
CAS
Google Scholar
Zhou S, Liang JY, Lu XJ, Li Q, Jiang L, Zhang Y, Schwalm CR, Fisher JB, Tjiputra J, Sitch S, Ahlström A, Huntzinger DN, Huang Y, Wang G, Luo Y (2018) Sources of uncertainty in modeled land carbon storage within and across three MIPs: Diagnosis with three new techniques. J Clim 31(7):2833–2851. https://doi.org/10.1175/JCLI-D-17-0357.1
Article
Google Scholar
Zhou J, Xia J, Wei N, Liu Y, Bian C, Bai Y, Luo Y (2021) A traceability analysis system for model evaluation on land carbon dynamics: design and applications. Ecol Process 10:12. https://doi.org/10.1186/s13717-021-00281-w