Ahmed F, Fakhruddin ANM, Imam MDT et al (2016) Spatial distribution and source identification of heavy metal pollution in roadside surface soil: a study of Dhaka Aricha highway, Bangladesh. Ecol Process 5:2. https://doi.org/10.1186/s13717-016-0045-5
Article
Google Scholar
Alexander HM, Foster BL, Ballantyne F et al (2012) Metapopulations and metacommunities: combining spatial and temporal perspectives in plant ecology. J Ecol 100:88–103. https://doi.org/10.1111/j.1365-2745.2011.01917.x
Article
Google Scholar
Aristizábal N, Metzger JP (2019) Landscape structure regulates pest control provided by ants in sun coffee farms. J Appl Ecol 56:21–30. https://doi.org/10.1111/1365-2664.13283
Article
Google Scholar
Augustine DJ, Derner JD (2014) Controls over the strength and timing of fire-grazer interactions in a semi-arid rangeland. J Appl Ecol 51:242–250. https://doi.org/10.1111/1365-2664.12186
Article
Google Scholar
Baggio JA, Schoon ML, Valury S (2019) Managing networked landscapes: conservation in a fragmented, regionally connected world. Reg Environ Change 19:2551–2562. https://doi.org/10.1007/s10113-019-01567-8
Article
Google Scholar
Barik S, Saha GK, Mazumdar S (2022) Influence of land cover features on avian community and potential conservation priority areas for biodiversity at a Ramsar site in India. Ecol Process 11:1. https://doi.org/10.1186/s13717-022-00369-x
Beckmann JP, Berger J (2003) Using black bears to test ideal-free distribution models experimentally. J Mammal 84:594–606. https://doi.org/10.1644/1545-1542(2003)084%3c0594:UBBTTI%3e2.0.CO;2
Article
Google Scholar
Bedane GA, Feyisa GL, Senbeta F (2022) Spatial distribution of above ground carbon density in Harana Forest, Ethiopia. Ecol Process 11:4. https://doi.org/10.1186/s13717-021-00345-x
Article
Google Scholar
Bergerot B, Tournant P, Moussus J-P et al (2013) Coupling inter-patch movement models and landscape graph to assess functional connectivity. Popul Ecol 55:193–203. https://doi.org/10.1007/s10144-012-0349-y
Article
Google Scholar
Bierregaard RO, Lovejoy TE, Kapos V, Hutchings RW (1992) The biological dynamics of tropical rainforest fragments. Bioscience 42:859–866. https://doi.org/10.2307/1312085
Article
Google Scholar
Boone SR, Brehm AM, Mortelliti A (2022) Seed predation and dispersal by small mammals in a landscape of fear: effects of personality, predation risk and land-use change. Oikos. https://doi.org/10.1111/oik.08232
Article
Google Scholar
Brinkerhoff RJ, Haddad NM, Orrock JL (2005) Corridors and olfactory predator cues affect small mammal behavior. J Mammal 86:662–669. https://doi.org/10.1644/1545-1542(2005)086[0662:CAOPCA]2.0.CO;2
Article
Google Scholar
Caballero-López B, Bommarco R, Blanco-Moreno JM et al (2012) Aphids and their natural enemies are differently affected by habitat features at local and landscape scales. Biol Control 63:222–229. https://doi.org/10.1016/j.biocontrol.2012.03.012
Article
Google Scholar
Cardoso PG, Raffaelli D, Pardal MA (2007) Seagrass beds and intertidal invertebrates: an experimental test of the role of habitat structure. Hydrobiologia 575:221–230. https://doi.org/10.1007/s10750-006-0375-x
Article
Google Scholar
Cui F, Wang B, Zhang Q et al (2021) Climate change versus land-use change—what affects the ecosystem services more in the forest-steppe ecotone? Sci Total Environ 759:143525. https://doi.org/10.1016/j.scitotenv.2020.143525
Article
CAS
Google Scholar
Datta D, Bairagi M, Dey M et al (2022) Spatially explicit estimation of soil organic carbon stock of an estuarine mangrove wetland of eastern India using elemental analysis and very-fine resolution satellite data. Ecol Process 11:30. https://doi.org/10.1186/s13717-022-00370-4
Article
Google Scholar
Davies HF, Visintin C, Gillespie GR, Murphy BP (2021) Investigating the effects of fire management on savanna biodiversity with grid-based spatially explicit population simulations. J Appl Ecol 58:677–686. https://doi.org/10.1111/1365-2664.13801
Article
Google Scholar
Diamond JM (1983) Ecology: laboratory, field and natural experiments. Nature 304:586–587. https://doi.org/10.1038/304586a0
Article
Google Scholar
Diamond J (2001) Ecology: dammed experiments! Science 294:1847–1848. https://doi.org/10.1126/science.1067012
Article
CAS
Google Scholar
DiFiore BP, Queenborough SA, Madin EMP et al (2019) Grazing halos on coral reefs: predation risk, herbivore density, and habitat size influence grazing patterns that are visible from space. Mar Ecol Prog Ser 627:71–81. https://doi.org/10.3354/meps13074
Article
Google Scholar
Ewers RM, Didham RK, Fahrig L et al (2011) A large-scale forest fragmentation experiment: the stability of altered forest ecosystems project. Phil Trans Royal Soc B Biol Sci 366:3292–3302. https://doi.org/10.1098/rstb.2011.0049
Article
Google Scholar
Frazier AE (2022) Scope and its role in advancing a science of scaling in landscape ecology. Landsc Ecol. https://doi.org/10.1007/s10980-022-01403-1
Fronhofer EA, Altermatt F (2015) Eco-evolutionary feedbacks during experimental range expansions. Nat Commun 6:6844. https://doi.org/10.1038/ncomms7844
Article
CAS
Google Scholar
Gering JC, Blair RB (1999) Predation on artificial bird nests along an urban gradient: predatory risk or relaxation in urban environments? Ecography 22:532–541. https://doi.org/10.1111/j.1600-0587.1999.tb00542.x
Article
Google Scholar
Gerstner K, Moreno-Mateos D, Gurevitch J et al (2017) Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol Evol 8:777–784. https://doi.org/10.1111/2041-210X.12758
Article
Google Scholar
Gillespie MAK, Baude M, Biesmeijer J et al (2017) A method for the objective selection of landscape-scale study regions and sites at the national level. Methods Ecol Evol 8:1468–1476. https://doi.org/10.1111/2041-210X.12779
Article
Google Scholar
Giometto A, Rinaldo A, Carrara F, Altermatt F (2014) Emerging predictable features of replicated biological invasion fronts. Proc Natl Acad Sci USA 111:297–301. https://doi.org/10.1073/pnas.1321167110
Article
CAS
Google Scholar
Gornall JL, Jónsdóttir IS, Woodin SJ, Van Der Wal R (2007) Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–941. https://doi.org/10.1007/s00442-007-0785-0
Article
CAS
Google Scholar
Govind A, Chen JM, Mcdonnell J et al (2011) Effects of lateral hydrological processes on photosynthesis and evapotranspiration in a boreal ecosystem. Ecohydrology 4:394–410. https://doi.org/10.1002/eco.141
Article
Google Scholar
Güneralp I, Filippi AM, Randall J (2014) Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling. Int J Appl Earth Obs Geoinf 33:119–126. https://doi.org/10.1016/j.jag.2014.05.004
Article
Google Scholar
Haddad NM (2012) Connecting ecology and conservation through experiment. Nat Methods 9:794–795. https://doi.org/10.1038/nmeth.2107
Article
CAS
Google Scholar
Harrison F (2011) Getting started with meta-analysis. Methods Ecol Evol 2:1–10. https://doi.org/10.1111/j.2041-210X.2010.00056.x
Article
Google Scholar
Heggenes J, Odland A, Chevalier T et al (2017) Herbivore grazing—or trampling? Trampling effects by a large ungulate in cold high-latitude ecosystems. Ecol Evol 7:6423–6431. https://doi.org/10.1002/ece3.3130
Article
Google Scholar
Hess CA, Tschinkel WR (2017) Effect of thinning and clear-cuts on the transmission of fire in slash pine plantations during restoration to longleaf pine. Ecol Restor 35:33–40. https://doi.org/10.3368/er.35.1.33
Article
Google Scholar
Holt RD, Robinson GR, Gaines MS (1995) Vegetation dynamics in an experimentally fragmented landscape. Ecology 76:1610–1624. https://doi.org/10.2307/1938162
Article
Google Scholar
Hovel KA, Wahle RA (2010) Effects of habitat patchiness on American lobster movement across a gradient of predation risk and shelter competition. Ecology 91:1993–2002. https://doi.org/10.1890/09-0595.1
Article
Google Scholar
Huber R, Briner S, Bugmann H et al (2014) Inter- and transdisciplinary perspective on the integration of ecological processes into ecosystem services analysis in a mountain region. Ecol Process 3:9. https://doi.org/10.1186/2192-1709-3-9
Hylander K (2005) Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. J Appl Ecol 42:518–525. https://doi.org/10.1111/j.1365-2664.2005.01033.x
Article
Google Scholar
Jenerette GD, Shen W (2012) Experimental landscape ecology. Landsc Ecol 27:1237–1248. https://doi.org/10.1007/s10980-012-9797-1
Article
Google Scholar
John K, Bouslihim Y, Isong IA et al (2022) Mapping soil nutrients via different covariates combinations: theory and an example from Morocco. Ecol Process 11:23. https://doi.org/10.1186/s13717-022-00368-y
Article
Google Scholar
Joschko M, Oehley J, Gebbers R et al (2008) A spatial approach to soil-ecological experimentation at landscape scale. J Plant Nutr Soil Sci 171:338–343. https://doi.org/10.1002/jpln.200700088
Article
CAS
Google Scholar
Keane RE, Holsinger LM, Mahalovich MF, Tomback DF (2017) Evaluating future success of whitebark pine ecosystem restoration under climate change using simulation modeling. Restor Ecol 25:220–233. https://doi.org/10.1111/rec.12419
Article
Google Scholar
King EG, Franz TE (2016) Combining ecohydrologic and transition probability-based modeling to simulate vegetation dynamics in a semi-arid rangeland. Ecol Model 329:41–63. https://doi.org/10.1016/j.ecolmodel.2016.02.019
Article
Google Scholar
Kohler RE (2002) Labscapes and landscapes: exploring the lab-field border in biology. University of Chicago Presss, Chicago and London
Book
Google Scholar
Koricheva J, Gurevitch J, Mengersen K (eds) (2013) Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton
Google Scholar
Krebs CJ (1989) Ecological methodology. Harper Collins, New York
Google Scholar
Larsen C, Hargreaves A (2020) Miniaturizing landscapes to understand species distributions. Ecogrpahy 43:1625–1638. https://doi.org/10.1111/ecog.04959
Article
Google Scholar
Laurance WF, Lovejoy TE, Vasconcelos HL et al (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618. https://doi.org/10.1046/j.1523-1739.2002.01025.x
Article
Google Scholar
Levey DJ, Caughlin TT, Brudvig LA et al (2016) Disentangling fragmentation effects on herbivory in understory plants of longleaf pine savanna. Ecology 97:2248–2258. https://doi.org/10.1002/ecy.1466
Article
Google Scholar
Lloyd MC, Rejniak KA, Brown JS et al (2015) Pathology to enhance precision medicine in oncology: lessons from landscape ecology. Adv Anat Pathol 22:267–272. https://doi.org/10.1097/PAP.0000000000000078
Article
Google Scholar
Lu W, Xiao J, Lei W et al (2018) Human activities accelerated the degradation of saline seepweed red beaches by amplifying top-down and bottom-up forces. Ecosphere 9:e02352. https://doi.org/10.1002/ecs2.2352
Article
Google Scholar
Marini MA (1997) Predation-mediated bird nest diversity: an experimental test. Can J Zool 75:317–323. https://doi.org/10.1139/z97-040
Article
Google Scholar
Menzies Pluer EG, Schneider RL, Morreale SJ et al (2020) Returning degraded soils to productivity: an examination of the potential of coarse woody amendments for improved water retention and nutrient holding capacity. Water Air Soil Pollut 231:15. https://doi.org/10.1007/s11270-019-4380-x
Article
CAS
Google Scholar
Miguel MF, Tabeni S, Cona MI, Campos CM (2018) Secondary seed dispersal by mammals between protected and grazed semiarid woodland. For Ecol Manage 422:41–48. https://doi.org/10.1016/j.foreco.2018.03.056
Article
Google Scholar
Muñoz P, García-Rodríguez A, Sandoval L (2021) Urbanization, habitat extension and spatial pattern, threaten a costa Rican endemic bird. Revista De Biologia Trop 69:170–180. https://doi.org/10.15517/RBT.V69I1.41742
Article
Google Scholar
Nunes AM, Byrne KM (2022) Drought and shrub cover differentially affect seed bank composition within two sagebrush steppe communities. J Arid Environ 202:104752. https://doi.org/10.1016/j.jaridenv.2022.104752
Article
Google Scholar
Opdam P, Foppen R, Vos C (2002) Bridging the gap between ecology and spatial planning in landscape ecology. Landsc Ecol 16:767–779
Article
Google Scholar
Ouyang F, Su W, Zhang Y et al (2020) Ecological control service of the predatory natural enemy and its maintaining mechanism in rotation-intercropping ecosystem via wheat-maize-cotton. Agr Ecosyst Environ 301:107024. https://doi.org/10.1016/j.agee.2020.107024
Article
CAS
Google Scholar
Paca VHM, Espinoza-Dávalos GE, Hessels TM et al (2019) The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers. Ecol Process 8:6. https://doi.org/10.1186/s13717-019-0158-8
Article
Google Scholar
Pittman SJ, Wiens JA, Wu J, Urban DL (2018) Landscape ecologists’ perspectives on seascape ecology. In: Pittman SJ (ed) Seascape ecology. Wiley Blackwell, Hoboken, pp 485–492
Rango A, Goslee S, Herrick J et al (2002) Remote sensing documentation of historic rangeland remediation treatments in southern New Mexico. J Arid Environ 50:549–572. https://doi.org/10.1006/jare.2001.0865
Article
Google Scholar
Rowland MM, Wisdom MJ, Nielson RM et al (2018) Modeling elk nutrition and habitat use in western Oregon and Washington. Wildl Monogr 199:1–6
Article
Google Scholar
Samarasin P, Shuter BJ, Wright SI, Rodd FH (2017) The problem of estimating recent genetic connectivity in a changing world. Conserv Biol 31:126–135. https://doi.org/10.1111/cobi.12765
Article
Google Scholar
Schmucki R, De Blois S (2009) Pollination and reproduction of a self-incompatible forest herb in hedgerow corridors and forest patches. Oecologia 160:721–733. https://doi.org/10.1007/s00442-009-1347-4
Article
Google Scholar
Sieger CS, Hovestadt T (2021) The effect of landscape structure on the evolution of two alternative dispersal strategies. Ecol Process 10:73. https://doi.org/10.1186/s13717-021-00343-z
Article
Google Scholar
Smith AL, Bull CM, Gardner MG, Driscoll DA (2014) Life history influences how fire affects genetic diversity in two lizard species. Mol Ecol 23:2428–2441. https://doi.org/10.1111/mec.12757
Article
Google Scholar
Srivastava DS, Kolasa J, Bengtsson J et al (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:379–384. https://doi.org/10.1016/j.tree.2004.04.010
Article
Google Scholar
Stake RE (2008) Qualitative case studies. Strategies of qualitative inquiry. Sage Publications, Thousand Oaks, pp 119–149
Google Scholar
Turner MG (2005) Landscape ecology in North America: past, present, and future. Ecology 86:1967–1974. https://doi.org/10.1890/04-0890
Article
Google Scholar
Turner MG, Gardner RH (2015) Landscape ecology in theory and practice: pattern and process. Springer-Verlag, New York
Google Scholar
Verma M, Schulte to Bühne H, Lopes M et al (2020) Can reindeer husbandry management slow down the shrubification of the Arctic? J Environ Manage 267:110636. https://doi.org/10.1016/j.jenvman.2020.110636
Article
Google Scholar
Visscher DR, Unger A, Grobbelaar H, Dewitt PD (2018) Bird foraging is influenced by both risk and connectivity in urban parks. J Urban Ecol 4:juy020. https://doi.org/10.1093/jue/juy0020
Article
Google Scholar
Webb SL, Olson CV, Dzialak MR et al (2012) Landscape features and weather influence nest survival of a ground-nesting bird of conservation concern, the greater sage-grouse, in human-altered environments. Ecol Process 1:4. https://doi.org/10.1186/2192-1709-1-4
Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515. https://doi.org/10.1046/j.1365-2427.2002.00887.x
Article
Google Scholar
Wiersma YF (2022a) Experimental landscape ecology. Springer, New York
Book
Google Scholar
Wiersma YF (2022b) Carrying out experiments in landscape ecology. Landscape Ecol 37:1729–1732. https://doi.org/10.1007/s10980-022-01459-z
Article
Google Scholar
Wiersma YF, Schneider DC (In press) Microlandscape experiments: are they useful for scale, scaling, and cross-scale inference? Curr Landsc Ecol Rep
With KA, Pavuk DM (2011) Habitat area trumps fragmentation effects on arthropods in an experimental landscape system. Landscape Ecol 26:1035–1048. https://doi.org/10.1007/s10980-011-9627-x
Article
Google Scholar
Xu B, Pan Y, Plante AF et al (2017) Modeling forest carbon cycle using long-term carbon stock field measurement in the Delaware River Basin. Ecosphere 8:e01802. https://doi.org/10.1002/ecs2.1802
Yuan F, Wu J, Li A et al (2015) Spatial patterns of soil nutrients, plant diversity, and aboveground biomass in the Inner Mongolia grassland: before and after a biodiversity removal experiment. Landscape Ecol 30:1737–1750. https://doi.org/10.1007/s10980-015-0154-z
Article
Google Scholar